

Crash Course: Data Analysis \& Presentation

Week 2

Tools

Elevate your analysis

Advanced Tools

- Petri dish samples
- Color
- \# of Colonies
- Size of Colonies
- Growth Rate
- ImageJ / Fiji
- Scientific image analysis
- Fiji = imageJ + GUI and plugins
- https://fiji.sc/
- https://imagej.net/Welcome

Initial analysis + making graphs

Excel in Action

- Install the Analysis ToolPak

Excel in Action

- Make visuals
- Scatter Plot
- Bar Chart
- Line Graph
- Statistics
- Average
- Standard Deviation
- Other
- Tables
- Color By
- If Statements

Excel in Action

- Add error bars to chart

- Standard Deviation
- Make a box plot
- Median (middle value)
- Q1, First Quartile (25\%)
- Q3, Third Quartile (75\%)
- Min = Q1 - 1.5*IQR
$-\operatorname{Max}=\mathrm{Q} 3+1.5^{*} \mathrm{IQR}$
- $\operatorname{IQR}=$ Q3 - Q1

https://support.microsoft.com/en-us/office/create-a-box-plot-10204530-8cdf-40fe-a711-2eb9785e510f
https://www.contextures.com/excelboxplotchart.htm|

Analysis

Before using a tool, what are we doing?

Accuracy / Precision

- Accuracy: how close a measure value is to the true value.
- Precision: how close measure values are to each other.

Accurate, but not precise

Not accurate and not precise

Precise and accurate

Precise, but not accurate

Accuracy / Precision \& Errors

- Accuracy: Systematic / Biased Errors
- How well equipment was used.
- How well experiment was controlled.
- Precision: Random / Chance Errors
- Precision of the equipment
- Cannot or are unable to control these factors
- Standard Deviation is a measure of Random Error
- Uncertainties: measurement of random errors
- Errors incurred as a results of imperfect tools that only have a certain degree of precision

Accurate, but not precise

Not accurate and not precise

Precise and accurate

Precise, but not accurate

Data Summaries

- Average: an estimate of the "true" value of the measurement
- Standard Deviation: a measure of the "spread" in the data
- You can be reasonably sure ($\sim 70 \%$) that if you repeat the same measurement one more time, that next measurement will be less than one standard deviation away from the average.
- Standard Error: an estimate in the uncertainty in the average of the measurements
- You can be reasonably sure ($\sim 70 \%$) that if you do the entire experiment again with the same number of repetitions, the average value from the new experiment will be less than one standard error away from the average value from this experiment.

Data Summaries - In Action

- Average = average
- Standard Deviation: use excel stdev function
- $N=$ number of samples
- $\mu=$ mean (average of our samples)

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

- Standard Error: = Standard Deviation / sqrt (\# of samples)
- In calculations
- Measure within +- 0.1 meters
- Box that we measure to be $1 \times 1 \mathrm{~m}$
- To calculate our area: $0.9 \times 0.9 \mathrm{~m}$ and $1.1 \times 1.1 \mathrm{~m}$
- 0.81 m 2 and 1.21 m 2
- $1.01 \mathrm{~m} 2+-0.2 \mathrm{~m} 2$

What Type of Chart \& Analysis to Use

- Depends!
- What are our independent and dependent variables?
- Independent: What we are changing / controlling
- Dependent: The outcome / result from the experiment.
- Are our variables categorical or numeric?
- Categorical: Represents characteristics
- Sorted into groups w/ names or labels
- Ex: A person's gender
- Numeric: Data has meaning as a measurement
- Expressed in terms of numbers
- Ex: A person's height, weight

What Type of Chart \& Analysis to Use

Independent Variable: Categorical Dependent Variable: Categorical Graphs: Bar Charts Analysis: Chi-squared test of independence	Independent Variable: Categorical Dependent Variable: Numeric Graphs: Box Plots / Bar Charts Analysis: T-tests / ANOVA
Independent Variable: Numeric Dependent Variable: Categorical Graphs: ?? Analysis: Regression, Classification	Independent Variable: Numeric Dependent Variable: Numeric Graphs: Scatter Plots Analysis: Regression

Null Hypothesis

- Null Hypothesis: A hypothesis that we can reject (is false)
- Alternate hypothesis: The hypothesis that we think is true
- How to reject a null hypothesis
- State the null hypothesis and the alternate hypothesis
- May be easier to do alternate first
- Support or reject the null hypothesis (use a test that generates a p-value)
- With our analysis, we are often only able to reject a null hypothesis

Analysis: Chi-squared tests

- Chi-Square Statistic X^{2}
- Measures how a model compares to observed data
- Data must be random, raw, mutually exclusive, from independent variables
- Types
- Chi-square goodness of fit: How well a sample of data matches a larger population
- Chi-square test for independence: Is there a relationship between the variables

C = degrees of freedom
$\mathrm{O}=$ observed value
$E=$ expected value

$$
\chi_{c}^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

https://www.statisticshowto.com/probability-and-statistics/chi-square/
https://www.investopedia.com/terms/c/chi-square-
statistic.asp\#:~:text=A\%20chi\%2Dsquare\%20(\%CF\%872,from\%20a\%20large\%20enough\%20sample.\&text=Chi\%2Dsquare 20are\%200tten\%20used\%20in\%20hypothesis\%20testing

In-Action: Chi-squared test of independence

- Alternate Hypothesis: Boys are more likely than girls to take German as a second language
- Null Hypothesis: Boys are not more likely than girls to take German as a second language
- Output of test = "p" value (probability that the variables are independent)
$\mathrm{p}<0.05=$ dependence (common value)
$\mathrm{p}>0.05=$ independent (common value)

Analysis: T-test

- Is there a statistical difference between two groups
- Assume that the means of the two distributions are equal
- Able to reject (groups are highly probably different) or fail to reject a null hypothesis, never accepts
- 20-30 samples in a group
- P-value (probability value): is the probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the null hypothesis is correct
- Critical Value: the boundaries of the acceptance region of the test
- p_value > α (Critical value): Fail to reject the null hypothesis of the statistical test.
- p_value $\leq \alpha$ (Critical value): Reject the null hypothesis of the statistical test.
- Common critical value $=0.05$
- This 0.05 means that, if we run the experiment 100 times, 5% of the times we will be able to reject the null hypothesis and 95% we will not.
- p_value > 0.1: No evidence
- p_value between 0.05 and 0.1: Weak evidence
- p_value between 0.01 and 0.05 : Evidence
- p_value between 0.001 and 0.01: Strong evidence
- p_value < 0.001: Very strong evidence

Analysis: T-test

- Distribution Types

- 1 Tailed or 2 Tailed
- 1 tailed when differences are in a specific directio
- 2 tailed is most common
- Paired or Unpaired?
- Does the data come from the same participants?
- Yes = Paired
- Variance: Equal or Unequal
- Is the variance between our samples equal?
- Equal: equal \# of data points, numbers are similar
- Conservative Choice: use unequal variances

1 vs 2 tailed: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests/
Equal or Unequal: https://www.ruf.rice.edu/~bioslabs/Stats tutorial/ttest17.html
The math: https://www.real-statistics.com/students-t-distribution/one-sample-t-test/
https://www.statisticshowto.com/probability-and-statistics/t-test/

Analysis: ANOVA

- ANOVA = Analysis of variance
- Outputs: variation within and between groups
- Determine if the results are significant
- Do you reject the null hypothesis?
- T-test limited to 2 groups, ANOVA allows for more
- One-way or two-way
- One-way: 1 independent variable
- Two-way: 2 independent variables
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/

Analysis: ANOVA

- ANOVA compares two things
- Variation within groups
- Variation between groups
- ANOVA Null Hypothesis
- All population means are equal

- One-way ANOVA
- Tells us that at least two groups are different from each other
- But not which one!

In-Action: ANOVA

- F: measures if the means of different samples are significantly different or not
- F = Between group variability / Within group variability
- Fstatistic > Fcritical = we reject the null hypothesis
- Fcritical is calculated for the desired significance level (α)

COMBINING VARIANCES INTO TEST STATISTIC F

Analysis: Regression

- Method for finding trends in data
- Linear Regression: relationship between variables can be described with a straight line
- Non-linear Regression: relationship between variables can be described with a curved line
- Slope
- Y-Intercept
- R-Squared (correlation co-efficient)
- How close are the variables related
- $1.0=$ perfect fit
- Human behavior: >0.5
- Physical process: > 0.9
- How High does R-squared need to be: https://statisticsbyjim.com/regression/how-high-r-squared/

Analysis: Margin of Error

- Margin of Error: Range of values above and below a Confidence Interval
- A poll says Candidate A will win an election with 52% of the vote with a confidence interval of 95\% and Margin of Error of 4\%
- If we run the election 100 times, 95 of 100 times the candidate will receive 48 56% of the vote
- $52-4=48$
- $52+4=56$

Analysis: Margin of Error

- How to calculate
- Margin of error = Critical value \times Standard Error of the sample .
- Most common by far
- Margin of error $=$ Critical value \times Standard Deviation for the population.
- Standard Error: Standard Deviation / sqrt (sample size)
- Critical Value:
- Depends on your chosen confidence value
- Look it up with a t or z-score table: Table
- https://www.youtube.com/watch?v=RAnFyF 6zHk

Analysis: Confidence Intervals

- Does not reflect the accuracy of a data set
- What is it saying: If the survey were repeated over and over, the results would match the results from the actual population 95% of the time
$-0 \%=$ no confidence at all that if you repeated the survey you would get the same results
- $100 \%=$ no doubt that if you repeated the survey that you would get the same results

Tips for Communication: Limits of Data \& Study

- Some of the first questions you will be asked regarding data is:
- What analysis did you conduct
- Why did you conduct this analysis
- What are the limitations on your data and experiment design
- Sources of error in your measurement
- External variables not accounted for

Data Presentation

Share your work so it can be understood.

Communications: What is our goal + how will it be seen / viewed?

Science and Engineering Fair

-What is our goal?

- Share the results of our research.
- Hypothesis is supported or not supported
- Design solves a problem and fits our design criteria
- How external factors have / do not have an effect
- How will it be viewed?
- Preliminary Judging (5-6 judges)
- 10-15 minutes for judges to learn about your project and score.
- Finalist Judging (5-6 judges)
- 12 minute Zoom interviews

Communications: What is our goal + how will it be seen / viewed?

Internal Design Reviews

-What is our goal?

- Approve a product for sale to customers
- Product is safe for all customer scenarios
- Product meets all design requirements
- How will it be viewed?
- In-depth design review meeting
- 2-3 hour meeting to review with 5-10 colleagues
- Report review
- Report emailed and on drive for many to view on their own time

Communicating - Visuals

Process: Sorting Skittles by color

1) Open bag of Skittles and pour onto a table
2) Group Skittles by color
3) Count the number of each color

Step 1: Open bag of Skittles

Step 2: Group Skittles by color.

Step 3: Count the number of each color.

What is our goal?

- Communicate our results: what tells us more?

After conducting an analysis of the outcome with 3 trials, the Energizer Alkaline lasted an average of 9.5 hours, the Duracell Alkaline an average of 9.2 hours and the Panasonic Heavy Duty an average of 5.1 hours.

Flashlights (medium drain device)

$$
\begin{aligned}
& 09 \\
& \text { Hours of battery use }
\end{aligned}
$$

[^0]
Graph Etiquette

- Title
- Axis Labels
- Include units
- Legend / Key
- Readability
- Background
- Colors
- Excess Precision

Flashlights (medium drain device)

Graph Etiquette - Colors

Graph Etiquette - Consistency

Graph Etiquette - Consistency

Graph Etiquette - "Cable News" Graphs

- For a bar chart our baseline always needs to be 0

Graph - Layout Rule of Thumb

- X-Axis: Independent Variable
- What we are changing
- Y-Axis: Dependent Variable
- The outcome
- Battery Experiment

- Independent Variable: Run time of flashlight
- Dependent Variable: Battery voltage

What is our goal?

- Communicating: How is our data changing over time
- Line Chart
- Scatter Plot (with connecting lines, aka line chart w/ dots)
- Bar Chart (each time period is a bar)
- Box Plot (advanced, will show at end)
- Examples are data from a survey of 50 people
- Survey sent each month
- Ask participants to choose their favorite fruit
- Goal: Does someone's favorite fruit change throughout the year

Change Over Time - Bar Chart

- Bar Chart (each time period is a bar) https://chartio.com/earn/charts/bar-chart-complete-quide/
- Good choice if your independent variable is not numerical
- Standard bar chart (left)
- Stacked bar chart (right)

Hints - Color is Your Friend

- If applicable: have your colors match the impression of the item
- Apple: red
- Banana: yellow

Change Over Time

- Line Chart and Scatter Plot w/ lines

- Good choice if your independent variable is numerical
- Line chart (left)
- Scatter plot w/ lines (right)

Hints - More is Not Always Better

- Think about what you want to communicate
- Good: clearly able to see logins are greater than other activities
- Bad: Difficult to determine differences between Entry, Message, xxxx

Hints - Baseline Value

- Think about what you want to communicate
- For Line Chart: Emphasize changes in value

Hints - Dual Axis

- We can compare different dependent variable variables on a 1 graph
- Be consistent with your axis scaling (don't place a large offset on the scaling)

Weekly Trials and Subscriptions

What is our goal?

- Communicating: Observe relationships between groups
- Scatter Plot
- Bubble Chart
- Grouped Bar Chart
- Examples are data from a survey of 50 people
- Survey sent each month
- Ask participants to choose their favorite fruit
- Goal: Does someone's favorite fruit change throughout the year

Relationship Between Groups

- Scatter Plot

https://chartio.com/learn/charts/what-is-a-scatter-plot/

- Good choice for determining correlation between groups, finding outliers, versatile - Scatter Plot (left)
- Scatter plot w/ color for favorite fruit

Relationship Between Groups

- Bubble Chart

- Good choice for determining correlation between groups, finding outliers, versatile

> Fruit Eaten / month (lbs)
> color signifies favorite fruit
> bubble size based on workouts / month (0-30)

Correlation

- Correlation: the relationship between the two variables
- How much does one variable affect the other?
- Positive correlation: Both variables move in the same direction
- Negative correlation: Variables move in opposite directions
- No correlation: No link between the two variables

Positive Correlation

Negative Correlation

No Correlation

https://mylearningsinaiml.wordpress.com/2018/11/21/scatter-plots/
https://astutesolutions.com/blog/articles/causation-vs-correlation

Correlation =/ Causation

- Correlation: A change in one variable mirrored by a positive or negative change in the other.
- Spurious Correlation: strong relationships between variables that are not caused by one another.
- Causation: One variable is changing as a result of the other variable.

Correlation =/ Causation

Per capita consumption of mozzarella cheese

Civil engineering doctorates awarded

Correlation =/ Causation

What is our goal?

- Communicating: How our data is distributed
- Bar Chart
- Histogram
- Density Curve
- Box Plot (advanced, will show at end)
- Examples are data from a survey of 50 people
- Survey sent each month
- Ask participants to choose their favorite fruit
- Goal: Does someone's favorite fruit change throughout the year

Data Distribution

- Histogram
- Plots the distribution of a numeric variable's values as a series of bars
- The x-axis values are "binned" together (ex. each hour is binned together)

Data Distribution

- Histogram
- Very good at showing the distribution of our data

symmetric, unimodal

uniform

skew left

bimodal

skew right

What is our goal?

- Communicating: Part to Whole Comparison (understanding the components that make up the total)
- Pie Chart
- Doughnut Chart (pie chart w/ the center missing)
- Stacked Bar Chart
- Stacked Area Chart
- Examples are data from a survey of 50 people
- Survey sent each month
- Ask participants to choose their favorite fruit
- Goal: Does someone's favorite fruit change throughout the year

Part to Whole Comparison

- Pie Chart
- Comparing each variable relative to the whole data set
- Only use for the above use case
https://chartio.com/learn/charts/pie-chart-complete-guide/

Hints - Pie Chart

- Include annotations (\%, value)
- Order slices by size
- Limit the number of slices
- Group many "small" slices into "other"

Part to Whole Comparison

- Area Chart

https://chartio.com/learn/charts/area-chart-complete-guide/

- Line Chart + Bar Chart
- Very powerful if the whole is also changing (left: same \# / month; right: different \# / month)

Uncertainty

-What is uncertainty?

- The variability of our measurement.
- How do we communicate our uncertainty?
- Uncertainty / Error bars
- Uncertainty shading
- Box plots

Error Bars

Shading for uncertainty

- An alternative to error bars is to add shading for uncertainty.

Box Plot

- Combines many concepts
https://chartio.com/resources/tutorials/what-is-a-box-plot/
- Provides a 5 number summary in 1 graph
- Minimum
- Maximum
- Median (Average)
- First Quartile (25\%)
- Third Quartile (75\%)

Box Plot

SCIENCES
ENGINEERIN:

Thank You!

Reach out anytime:

Jordan Krell
jkrell@flintsciencefair.org

[^0]: https://www.sciencebuddies.org/science-fair-projects/science-fair/data-analysis-graphs

