

Crash Course: Data Analysis & Presentation

Week 2

Jordan Krell jkrell@flintsciencefair.org

Tools

Elevate your analysis

8/20/2023

FlintScienceFair.org

Advanced Tools

- Petri dish samples
 - Color
 - # of Colonies
 - Size of Colonies
 - Growth Rate
- ImageJ / Fiji
 - Scientific image analysis
 - Fiji = imageJ + GUI and plugins
 - https://fiji.sc/
 - https://imagej.net/Welcome

Excel

Initial analysis + making graphs

Excel in Action

• Install the Analysis ToolPak

Excel in Action

- Make visuals
 - Scatter Plot
 - Bar Chart
 - Line Graph
- Statistics
 - Average
 - Standard Deviation
- Other
 - Tables
 - Color By
 - If Statements

Excel in Action

- Add error bars to chart
 - Standard Deviation
- Make a box plot
 - Median (middle value)
 - Q1, First Quartile (25%)
 - Q3, Third Quartile (75%)
 - Min = Q1 1.5*IQR
 - Max = Q3 + 1.5*IQR
 - IQR = Q3 Q1

Maximum (Maximum Value in the Data, Q₃ + I.5*IQR)

https://support.microsoft.com/en-us/office/create-a-box-plot-10204530-8cdf-40fe-a711-2eb9785e510f https://www.contextures.com/excelboxplotchart.html

FlintScienceFair.org

Analysis

Before using a tool, what are we doing?

Accuracy / Precision

- Accuracy: how close a measure value is to the true value.
- **Precision:** how close measure values are to each other.

https://wp.stolaf.edu/it/gis-precision-accuracy/

FlintScienceFair.org

Accuracy / Precision & Errors

- Accuracy: Systematic / Biased Errors
 - How well equipment was used.
 - How well experiment was controlled.
- Precision: Random / Chance Errors
 - Precision of the equipment
 - Cannot or are unable to control these factors
 - Standard Deviation is a measure of Random Error
- Uncertainties: measurement of random errors
 - Errors incurred as a results of imperfect tools that only have a certain degree of precision

https://courses.lumenlearning.com/boundless-statistics/chapter/measurement-error/

FlintScienceFair.org

Data Summaries

- Average: an estimate of the "true" value of the measurement
- Standard Deviation: a measure of the "spread" in the data
 - You can be reasonably sure (~70%) that if you repeat the same measurement one more time, that *next measurement* will be less than one standard deviation away from the average.
- Standard Error: an estimate in the uncertainty in the average of the measurements
 - You can be reasonably sure (~70%) that if you do the *entire experiment* again with the same number of repetitions, the *average value from the new experiment* will be less than one standard error away from the average value from this experiment.

https://www2.southeastern.edu/Academics/Faculty/rallain/plab194/error.html

Data Summaries – In Action

- Average = average
- Standard Deviation: use excel stdev function
 - N = number of samples
 - $-\mu$ = mean (average of our samples)

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- Standard Error: = Standard Deviation / sqrt (# of samples)
- In calculations
 - Measure within +- 0.1 meters
 - Box that we measure to be 1 x 1 m
 - To calculate our area: 0.9 x 0.9m and 1.1 x 1.1m
 - 0.81m2 and 1.21 m2
 - 1.01m2 +- 0.2m2

What Type of Chart & Analysis to Use

- Depends!
- What are our independent and dependent variables?
 - Independent: What we are changing / controlling
 - Dependent: The outcome / result from the experiment.
- Are our variables categorical or numeric?
 - Categorical: Represents characteristics
 - Sorted into groups w/ names or labels
 - Ex: A person's gender
 - Numeric: Data has meaning as a measurement
 - Expressed in terms of numbers
 - Ex: A person's height, weight

https://www.dummies.com/education/math/statistics/types-of-statistical-data-numerical-categorical-and-ordinal/

What Type of Chart & Analysis to Use

Independent Variable: Categorical Dependent Variable: Categorical

Graphs: Bar Charts Analysis: Chi-squared test of independence

Independent Variable: Numeric Dependent Variable: Categorical

Graphs: ?? Analysis: Regression, Classification Independent Variable: Numeric Dependent Variable: Numeric

Independent Variable: Categorical

Dependent Variable: Numeric

Graphs: Box Plots / Bar Charts

Analysis: T-tests / ANOVA

Graphs: Scatter Plots Analysis: Regression

Null Hypothesis

- Null Hypothesis: A hypothesis that we can reject (is false)
 - Alternate hypothesis: The hypothesis that we think is true
- How to reject a null hypothesis
 - State the null hypothesis and the alternate hypothesis
 - May be easier to do alternate first
 - Support or reject the null hypothesis (use a test that generates a p-value)
- With our analysis, we are often only able to reject a null hypothesis

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/support-or-reject-null-hypothesis/

Analysis: Chi-squared tests

- Chi-Square Statistic χ^2
 - Measures how a model compares to observed data
 - Data must be random, raw, mutually exclusive, from independent variables
- Types
 - Chi-square goodness of fit: How well a sample of data matches a larger population
 - Chi-square test for independence: Is there a relationship between the variables
- C = degrees of freedom
- O = observed value
- E = expected value

 $\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

https://www.statisticshowto.com/probability-and-statistics/chi-square/

https://www.investopedia.com/terms/c/chi-squarestatistic.asp#:~:text=A%20chi%2Dsquare%20(%CF%872,from%20a%20large%20enough%20sample.&text=Chi%2Dsquare%20iag 20are%20often%20used%20in%20hypothesis%20testing

In-Action: Chi-squared test of independence

- Alternate Hypothesis: Boys are more likely than girls to take German as a second language
- Null Hypothesis: Boys are not more likely than girls to take German as a second language
- Output of test = "p" value (probability that the variables are independent) p < 0.05 = dependence (common value) p > 0.05 = independent (common value)

https://www.real-statistics.com/chi-square-and-f-distributions/independence-testing/

Analysis: T-test

- · Is there a statistical difference between two groups
 - Assume that the means of the two distributions are equal
 - Able to reject (groups are highly probably different) or fail to reject a null hypothesis, never accepts
 - 20-30 samples in a group
- P-value (probability value): is the probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the null hypothesis is correct
- Critical Value: the boundaries of the acceptance region of the test
- **p_value** > α (**Critical value**): Fail to reject the null hypothesis of the statistical test.
- **p_value** $\leq \alpha$ (Critical value): Reject the null hypothesis of the statistical test.
- Common critical value = 0.05
 - This 0.05 means that, if we run the experiment 100 times, 5% of the times we will be able to reject the null hypothesis and 95% we will not.
 - p_value > 0.1: No evidence
 - p_value between 0.05 and 0.1: Weak evidence
 - p_value between 0.01 and 0.05: Evidence
 - p_value between 0.001 and 0.01: Strong evidence
 - p_value < 0.001: Very strong evidence

Start Here: https://towardsdatascience.com/the-statistical-analysis-t-test-explained-for-beginners-and-experts-fd0e358bbb62

Analysis: T-test

Two-tailed t-distribution plot

One-tailed t-distribution plot

- Distribution Types
 - 1 Tailed or 2 Tailed
 - 1 tailed when differences are in a specific direction
 - 2 tailed is most common
- Paired or Unpaired?
 - Does the data come from the same participants?
 - Yes = Paired
- Variance: Equal or Unequal
 - Is the variance between our samples equal?
 - Equal: equal # of data points, numbers are similar
 - Conservative Choice: use unequal variances

1 vs 2 tailed: <u>https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests/</u> Equal or Unequal: <u>https://www.ruf.rice.edu/~bioslabs/Stats_tutorial/ttest17.html</u> The math: <u>https://www.real-statistics.com/students-t-distribution/one-sample-t-test/</u>

https://www.statisticshowto.com/probability-and-statistics/t-test/

Analysis: ANOVA

- ANOVA = Analysis of variance
 - Outputs: variation within and between groups
- Determine if the results are significant
 - Do you reject the null hypothesis?
- T-test limited to 2 groups, ANOVA allows for more
- One-way or two-way
 - One-way: 1 independent variable
 - Two-way: 2 independent variables

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/ https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/

Analysis: ANOVA

- ANOVA compares two things
 - Variation within groups
 - Variation between groups
- ANOVA Null Hypothesis
 - All population means are equal

- One-way ANOVA
 - Tells us that at least two groups are different from each other
 - But not which one!

In-Action: ANOVA

- F: measures if the means of different samples are significantly different or not
 - F = Between group variability / Within group variability
 - Fstatistic > Fcritical = we reject the null hypothesis
 - Fcritical is calculated for the desired significance level (α)

Analysis: Regression

- Method for finding trends in data
- Linear Regression: relationship between variables can be described with a straight line
- Non-linear Regression: relationship between variables can be described with a curved line
- Slope
- Y-Intercept
- R-Squared (correlation co-efficient)
 - How close are the variables related
 - -1.0 = perfect fit
 - Human behavior: > 0.5
 - Physical process: > 0.9
 - How High does R-squared need to be: <u>https://statisticsbyjim.com/regression/how-high-r-squared/</u>

https://www.statisticshowto.com/probability-and-statistics/regression-analysis/find-a-linear-regression-equation/#definition

https://statisticsbyjim.com/regression/interpret-r-squared-regression/

Analysis: Margin of Error

- Margin of Error: Range of values above and below a *Confidence Interval*
- A poll says Candidate A will win an election with 52% of the vote with a confidence interval of 95% and Margin of Error of 4%
 - If we run the election 100 times, 95 of 100 times the candidate will receive 48 56% of the vote
 - 52 4 = 48
 - 52 + 4 = 56

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/margin-of-error/

Analysis: Margin of Error

- How to calculate
 - Margin of error = Critical value x Standard Error of the sample.
 - Most common by far
 - Margin of error = Critical value x Standard Deviation for the population.
- Standard Error: Standard Deviation / sqrt (sample size)
- Critical Value:
 - Depends on your chosen confidence value
 - Look it up with a t or z-score table: Table
 - <u>https://www.youtube.com/watch?v=RAnFyF_6zHk</u>

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/margin-of-error/

Analysis: Confidence Intervals

- Does not reflect the accuracy of a data set
- What is it saying: If the survey were repeated over and over, the results would match the results from the actual population 95% of the time
 - 0% = no confidence at all that if you repeated the survey you would get the same results
 - 100% = no doubt that if you repeated the survey that you would get the same results

Tips for Communication: Limits of Data & Study

- Some of the first questions you will be asked regarding data is:
 - What analysis did you conduct
 - Why did you conduct this analysis
 - What are the limitations on your data and experiment design
 - Sources of error in your measurement
 - · External variables not accounted for

Data Presentation

Share your work so it can be understood.

FlintScienceFair.org

Communications: What is our goal + how will it be seen / viewed? *Science and Engineering Fair*

- What is our goal?
 - Share the results of our research.
 - · Hypothesis is supported or not supported
 - Design solves a problem and fits our design criteria
 - · How external factors have / do not have an effect
- How will it be viewed?
 - Preliminary Judging (5-6 judges)
 - 10-15 minutes for judges to learn about your project and score.
 - Finalist Judging (5-6 judges)
 - 12 minute Zoom interviews

Communications: What is our goal + how will it be seen / viewed? *Internal Design Reviews*

- What is our goal?
 - Approve a product for sale to customers
 - Product is safe for all customer scenarios
 - Product meets all design requirements
- How will it be viewed?
 - In-depth design review meeting
 - 2-3 hour meeting to review with 5-10 colleagues
 - Report review
 - Report emailed and on drive for many to view on their own time

Communicating - Visuals

Process: Sorting Skittles by color

- 1) Open bag of Skittles and pour onto a table
- 2) Group Skittles by color
- 3) Count the number of each color

Step 1: Open bag of Skittles

Step 2: Group Skittles by color.

FlintScienceFair.org

Step 3: Count the number of each color.

What is our goal?

• Communicate our results: what tells us more?

After conducting an analysis of the outcome with 3 trials, the Energizer Alkaline lasted an average of 9.5 hours, the Duracell Alkaline an average of 9.2 hours and the Panasonic Heavy Duty an average of 5.1 hours.

https://www.sciencebuddies.org/science-fair-projects/science-fair/dataanalysis-graphs

Graph Etiquette

- Title
- Axis Labels
 - Include units
- Legend / Key
- Readability
 - Background
 - Colors
 - Excess Precision

Graph Etiquette - Colors

Graph Etiquette - Consistency

Graph Etiquette - Consistency

Graph Etiquette – "Cable News" Graphs

• For a bar chart our baseline always needs to be 0

Graph – Layout Rule of Thumb

- X-Axis: Independent Variable
 - What we are changing
- Y-Axis: Dependent Variable – The outcome

Battery Life Over Time (average of 5 flash light tests @ 70°C) 2 Battery Voltage (V) ..5 1 0.5 0.25 0.5 0.75 1.25 1.5 1.75 0 Run Time (hours) Brand A — Brand B — Brand C

- Battery Experiment
 - Independent Variable: Run time of flashlight
 - Dependent Variable: Battery voltage

What is our goal?

- Communicating: How is our data changing over time
 - Line Chart
 - Scatter Plot (with connecting lines, aka line chart w/ dots)
 - Bar Chart (each time period is a bar)
 - Box Plot (advanced, will show at end)
- Examples are data from a survey of 50 people
 - Survey sent each month
 - Ask participants to choose their favorite fruit
 - Goal: Does someone's favorite fruit change throughout the year

Change Over Time – Bar Chart

- Bar Chart (each time period is a bar) https://chartio.com/learn/charts/bar-chart-complete-guide/
 - Good choice if your independent variable is not numerical
 - Standard bar chart (left)
 - Stacked bar chart (right)

Hints – Color is Your Friend

- If applicable: have your colors match the impression of the item
 - Apple: red
 - Banana: yellow

Change Over Time

- Line Chart and Scatter Plot w/ lines
 - Good choice if your independent variable is numerical
 - Line chart (left)
 - Scatter plot w/ lines (right)

Hints – More is Not Always Better

- Think about what you want to communicate
 - Good: clearly able to see logins are greater than other activities
 - Bad: Difficult to determine differences between Entry, Message, xxxx

User Events by Week

Hints – Baseline Value

- Think about what you want to communicate
 - For Line Chart: Emphasize changes in value

Hints – Dual Axis

- We can compare different dependent variable variables on a 1 graph
 - Be consistent with your axis scaling (don't place a large offset on the scaling)

What is our goal?

- Communicating: Observe relationships between groups
 - Scatter Plot
 - Bubble Chart
 - Grouped Bar Chart
- Examples are data from a survey of 50 people
 - Survey sent each month
 - Ask participants to choose their favorite fruit
 - Goal: Does someone's favorite fruit change throughout the year

Relationship Between Groups

Scatter Plot

https://chartio.com/learn/charts/what-is-a-scatter-plot/

- Good choice for determining correlation between groups, finding outliers, versatile
 - Scatter Plot (left)
 - Scatter plot w/ color for favorite fruit

Relationship Between Groups

- Bubble Chart
 - Good choice for determining correlation between groups, finding outliers, versatile

Fruit Eaten / month (lbs)

color signifies favorite fruit bubble size based on workouts / month (0-30)

Correlation

- Correlation: the relationship between the two variables
 - How much does one variable affect the other?
 - Positive correlation: Both variables move in the same direction
 - Negative correlation: Variables move in opposite directions
 - No correlation: No link between the two variables

https://mylearningsinaiml.wordpress.com/2018/11/21/scatter-plots/ https://astutesolutions.com/blog/articles/causation-vs-correlation

SCIENCE& ENGINEERING EAIR

Correlation =/ Causation

- Correlation: A change in one variable mirrored by a positive or negative change in the other.
 - Spurious Correlation: strong relationships between variables that are not caused by one another.
- Causation: One variable is changing as a result of the other variable.

Correlation =/ Causation

Per capita consumption of mozzarella cheese correlates with Civil engineering doctorates awarded

Correlation =/ Causation

What is our goal?

- Communicating: How our data is distributed
 - Bar Chart
 - Histogram
 - Density Curve
 - Box Plot (advanced, will show at end)
- Examples are data from a survey of 50 people
 - Survey sent each month
 - Ask participants to choose their favorite fruit
 - Goal: Does someone's favorite fruit change throughout the year

Data Distribution

- Histogram
 - Plots the distribution of a numeric variable's values as a series of bars.
 - The x-axis values are "binned" together (ex. each hour is binned together)

Data Distribution

- Histogram
 - Very good at showing the distribution of our data

What is our goal?

- Communicating: Part to Whole Comparison (understanding the components that make up the total)
 - Pie Chart
 - Doughnut Chart (pie chart w/ the center missing)
 - Stacked Bar Chart
 - Stacked Area Chart
- Examples are data from a survey of 50 people
 - Survey sent each month
 - Ask participants to choose their favorite fruit
 - Goal: Does someone's favorite fruit change throughout the year

Part to Whole Comparison

• Pie Chart

8/20/2023

- Comparing each variable relative to the whole data set
- Only use for the above use case

Hints – Pie Chart

- Include annotations (%, value)
- Order slices by size
- Limit the number of slices
 - Group many "small" slices into "other"

- 23.9% Strongly Agree
- 32.1% Agree
- 9 19.7% Neither Agree nor Disagree
- 10.2% Disagree
- 14.1% Strongly Disagree

Part to Whole Comparison

- Area Chart
 - Line Chart + Bar Chart
 - Very powerful if the whole is also changing (left: same # / month; right: different # / month)

https://chartio.com/learn/charts/area-chart-complete-guide/

Uncertainty

- What is uncertainty?
 - The variability of our measurement.
- How do we communicate our uncertainty?
 - Uncertainty / Error bars
 - Uncertainty shading
 - Box plots

Shading for uncertainty

• An alternative to error bars is to add shading for uncertainty.

Box Plot

- Combines many concepts
 <u>https://chartio.com/resources/tutorials/what-is-a-box-plot/</u>
 - Provides a 5 number summary in 1 graph
 - Minimum
 - Maximum
 - Median (Average)
 - First Quartile (25%)
 - Third Quartile (75%)

Box Plot

Thank You!

Reach out anytime:

Jordan Krell jkrell@flintsciencefair.org