The Effects of Perchlorate and Turmeric

on the Heart Rate of Daphnia magna

PURPOSE

To examine if turmeric helps reverse the effects of the chemical perchlorate on the heart rate of *Daphnia magna*.

INTRODUCTION

Daphnia magna are water fleas that are found in ponds, freshwater lakes and swamps. They eat algae, yeast, and bacteria and are the prey of tadpoles, salamanders, newts, aquatic insects, and many types of small fish. Since Daphnia magna is a food source for many aquatic organisms, if Daphnia magna contain toxins then these toxins will affect the organism that ends up eating the Daphnia magna. This is known as biomagnification and can result in catastrophic effects on the aquatic ecosystem, if left unchecked. Daphnia magna are good to use in experiments because they are sensitive to changes in water and it is easy to see the specific effects of a certain chemical. They are also commonly used in aquatic toxicology because they are transparent, making it easy to see their heart. Toxicology is the branch of science that is concerned with nature or the effects of poisons. Of all Daphnids, *Daphnia magna* are the largest and easy to handle.

0.1 Perchlorate solution

0.01Perchlorate solution

0.001 Perchlorate solution

Figure 4

MATERIALS 1) Daphnia magna Figure 13 2) Perchlorate 3) Turmeric 4) Spring water 5) Depression slide

Turmeric is a natural home remedy, and it helps the human body in many ways. It has powerful anti - inflammatory effects and is a strong antioxidant.

6) Light microscope 7) Pipette

8) Thermometer 9) Stopwatch

Set up of Experiment Photo Credits: Akshanth Bandla

PROCEDURE

- 1. Make Perchlorate and Turmeric solutions. 2. Mix 117.5 mg of perchlorate with 10 ml spring water to make 0.1 M perchlorate. 3. Mix 1 ml of 0.1 perchlorate solution with 9 ml spring water to make 0.01 perchlorate solution. 4. Mix 1 ml of 0.01 perchlorate solution with 9 ml of spring water to make 0.001 perchlorate solution.
- 5. Mix 50 mg of Turmeric with 3 ml spring water to make Turmeric solution.
- 6. Draw *Daphnia* from water and transfer to slide.
- 7. Place slide correctly under the microscope.

It can also keep blood sugar levels steady and prevent diabetes. The antioxidant properties of Turmeric can be used to reverse the toxic effects of Perchlorate on *Daphnia magna*.

Perchlorate is a harmful chemical that is found in airbag initiators for vehicles, fireworks, fertilizers, pool chlorination chemicals, etc, and results in pollution. Perchlorate is found in high concentrations in soil, water, and plants. Rivers that have perchlorate are dangerous because it can affect organisms in the river while also affecting humans who consume those organisms or drink from the water. Drinking liquids and eating food that is contaminated with perchlorate can affect thyroid glands, which is the main target, produce tumors, and effects normal development and growth in infants. So, if the perchlorate increases the heart rate of *Daphnia magna*, then it will affect other organisms as well. Major rivers have been contaminated with perchlorate in the past. For

Figure 7

Perchlorate Solutions

ANOVA for Turmeric + Perchlorate concentrations

Figure 9

Data Summa	ry									
	Samples									
	1	2	3	4	5	Total				
Ν	3	3	3	3	3	15				
ΣX	603	565	516	422	593	2699				
Mean	201	188.3333	172	140.6667	197.6667	179.9333				
ΣX^2	121229	106443	88766	5 59524	118025	493987				
Variance	13	17.3333	7	81.3333	404.3333	596.2095				
Std.Dev.	3.6056	4.1633	2.645	8 9.0185	20.108	24.4174				
Std.Err.	2.0817	2.4037	1.527	5 5.2068	11.6094	6.3045				
standard wei	ghted-me	ans analysis								
ANOVA Sumr	mary Ind	lependent San	nples k=5							
Source		SS	df	MS	F	Р				
Treatment [between group	730 ps]	0.9333	4	1825.2333	17.45	0.000166				
					1.11					

104.6

ANOVA for Perchlorate and Control

			Figur	e 10)					
Data Summa	ry									
	Samples									
	1	2	3		4	5	Total			
N	3	3	3		3		12			
ΣX	789	723	56	3	593		2668			
Mean	263	241	187.6	6667	197.6667		222.3333			
ΣX^2	207563	174245	1056	577	118025		605510			
Variance	28	1	10.3	333	404.3333		1120.4242			
Std.Dev.	5.2915	1	3.21	46	20.108	20.108	33.4727			
Std.Err.	3.0551	0.5774	1.85	59	11.6094	11.6094	9.6627			
standard wei	ghted-mea	ans analysis								
ANOVA Sumr	nary Ind	ependent Sa	amples k=	4						
Source	-	SS	df		MS	F	Р			
Treatment [between group	1143 []	37.3333	3	38	312.4444	34.37	<.0001			
Ennon						74	10			

110.9167

- 8. Measure the bpm with a stopwatch for the control, spring water. Do this three times. Use different Daphnia for every trial.
- 9. Measure the bpm with the three different concentrations of perchlorate. Do three trials for each concentration.
- 10. Measure the bpm with turmeric solution. Do three trials.
- 11. Count the bpm with turmeric and different concentrations of perchlorate solutions.
- 12. Record data throughout processes.

CONCLUSION

The hypothesis was supported. Turmeric did help in reducing the heart rate of Daphnia magna after it was exposed to different concentrations of perchlorate. Perchlorate increased the heart rate of *Daphnia magna* past the normal heart rate and Turmeric reduced the heart rate of *Daphnia*

example, a river in Michigan that has been polluted with perchlorate is the Muskegon river. Another river that has been contaminated is the Colorado

river, which supplies drinking water for

approximately 20,000,000 people.

HYPOTHESIS

0.1 M Perchlorate will have the strongest effect on

the heart rate and turmeric will help reverse the

effects of perchlorate on the heart rate of *Daphnia*

Figure 11

1046

887.3333

Daphnia magna Photo Credits: Sharmitha Bandla magna in all three trials. Looking at the Anova graphs, the P value was less than 0.5, so the results were significant. Based on these results, turmeric can be used as part of a treatment for perchlorate contamination in humans and possibly reduce or reverse the negative health

effects.

magna.