

Measurements, Sensors and Data Logging Course

Week 2

Upcoming Weeks

- Office Hours
 - Monday Nov 1 @ 7:00 PM
 - Monday Nov 15 @ 7:00 PM
- Weekly Session
 - Thursday Nov 4 @ 7:00 PM
 - Thursday Nov 11 @ 7:00 PM
 - Thursday Nov 18 @ 7:00 PM

Lesson 2: Button

Use a pushbutton to change the state of the LED

Pushbutton Introduction

Lesson 2: Button

- What is a pushbutton?
 - A pushbutton is a momentary type of switch used as an input to an electrical system. When **closed** it allows an electrical current to flow through it. When **open** it prevents electrical current flow through it.
- Where are pushbuttons used?
 - Pushbuttons are used in many devices, from keyboards, cell phones, alarm clocks, industrial equipment, home appliances and much, much more.
 - Activity: find a device not listed above that uses a pushbutton.

0 0

By Michel Bakni - Derived from files [1] and [2].(in English) (1993) 315-1975 - IEEE Standard American National Standard Canadian Standard Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Letters), IEEE, p. 59 DOI: 10.1109/IEEESTD.1993.93397. ISBN: 0738109479., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=94264073

Example Pushbutton

Image trom tps://www.digikey.com/en/products/detai e-switch/TL2230EEE140/4029358

Pushbutton Introduction

Lesson 2: Button

- How do I use a pushbutton?
 - Follow the connection diagram to the right.
 - Grove Beginner's Kit has already done this for you.
 - We then read the state of the input using the digitalRead() function.

Example Pushbutton Connection

Modified from https://sites.google.com/site/ardunitydoc/getting-started/run-examples/push-button

- More Info:
 - <u>https://www.allaboutcircuits.com/textbook/digital/chpt-4/switch-types/</u>
 - <u>https://en.wikipedia.org/wiki/Push-button</u>

Pushbutton Introduction

Lesson 2: Button

- What happens if the circuit isn't completed?
 - If the circuit is not completed (to GND or +5V), the input will "float"
 - To prevent the value from floating, we use a resistor to pull up or pull down the input.
 - 10K Ohm is a common pull up / down resistor value
 - **Pull Up** = Resistor to Vcc (+5V)
 - Pull Down = Resistor to GND

Pullup and Pulldown Resistors Lesson 2: Button

- To prevent the value from floating, we use a resistor to pull up or pull down the input.
 - 10K Ohm is a common pull up / down resistor value
 - **Pull Up** = Resistor to Vcc (+5V)
 - Pull Down = Resistor to GND

Modified from https://sites.google.com/site/ardunitydoc/getting-started/run-examples/push-button

- More Info:
 - https://learn.sparkfun.com/tutorials/pull-up-resistors/all

Lesson 2 Hardware

Lesson 2: Button

- We can use the MCU on our Arduino to receive a digital reading of the state of a pushbutton.
 - Receiving a HIGH signal means the button is pressed.
 - Receiving a LOW signal means the button is released.
- What hardware will we need for this Lesson?
 - Grove LED Module on pin D4
 - Grove Button Module on pin D6
 - Seeeduino Lotus (Arduino Uno compatible board)

Image from https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf

Open and Upload Sketch Lesson 2: Button

- 1. Open Button Sketch
 - a. File \rightarrow Sketchbook \rightarrow CrashCourse_Jan \rightarrow L2_Button
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Watch the LED as you press the button.

Code Analysis – pinMode Function Lesson 2: Button

pinMode(buttonPin, INPUT);

- Configures the buttonPin as an input.
- The pinMode function configures the specified pin to behave either as an input or an output.
- Syntax:

pinMode(pin, mode);

- Pin: Arduino pin number to set the mode of
- Mode: options are
 - **INPUT**, set pin as an input
 - **OUTPUT**, set pin as an output
 - **INPUT_PULLUP**, set pin as an input and enable a weak internal pullup resistor.
- More information:
 - https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode/

Code Analysis – Variable Assignment Lesson 2: Button

buttonValue = digitalRead(buttonPin);

- Assigns the state of read buttonPin to buttonValue.
- The assignment operator (=) puts whatever is on the right side of the equal sign into the variable on the left side.
- Syntax:

variable = value;

- Variable: stores the value of the statement on the right side of the equals sign.
- Value: statement, function or equation whose value is to be stored in variable.
- More information:
 - https://www.arduino.cc/en/Reference/VariableDeclaration

Code Analysis – if...else if...else Conditionals Lesson 2: Button

- The if statement checks a condition and executes the proceeding statement(s) if the condition is TRUE.
- The **else** statement executes if the previous **if** conditional evaluated as FALSE. The **else** statement is optional.
- The **else if** statement combines the **else** statement with the **if** statement. The **else if** statement is optional.
- Syntax:

```
if(condition1)
{
    // do this
}
else if(condition2) // OPTIONAL
{
    // do that
}
else // OPTIONAL
{
    // do something else
}
```

- conditionX must evaluate to TRUE (not 0) or FALSE (0)
- More information:
 - <u>https://www.arduino.cc/reference/en/language/structure/control-structure/if/</u>
 - <u>https://www.arduino.cc/reference/en/language/structure/control-structure/else/</u>

```
if(buttonValue == HIGH)
{
    digitalWrite(ledPin, HIGH);
}
else
{
    digitalWrite(ledPin, LOW);
}
```

Example of an if...else conditional

Button Activities

Lesson 2: Button

- Activity 1
 - Change the LED to turn OFF if the button is pressed and turn ON when the button is released.
- Activity 2 (Bonus / Homework)
 - Keep the same function as the original L2_Button.ino sketch, without using a conditional statement.
- Activity 3 (Bonus / Homework)
 - Toggle the LED every time the button is pressed.

tinkercad

Use tinkercad to simulate a circuit and code

FlintScienceFair.org

What is Tinkercad?

Tinkercad

- App / website with multiple tools
 - 3D CAD
 - Circuits
 - Coding
 - Text
 - Block

• <u>https://www.tinkercad.com</u>

Grove vs Arduino + Breadboard

Arduino Set

Grove Kit (1) Sound **Grove Beginner Kit** •==== For Arduino® =====• /43212 ednesday ne 12 19 :51:53 10 Temperature & Humidity OLED Display 0.94" Batary Patentie Button Air Pressure 4 BC) 3-AD orations GROVE

https://www.seeedstudio.com/

https://techexplorations.com/guides/arduino/grove/what

SCIENC

FIGINEE

Arduino Grove Module

Blinking an LED Simulation

Tinkercad

۲

۲

• Why need a resistor? How to calculate the correct value for the resistor? (slide 30 In Week 1 lecture)

D4, 280 ohms

Blinking an LED in wiring and breadboard setting

Pushbutton + LED Simulation

Tinkercad

Lesson 3: Potentiometer

Use a potentiometer to change the brightness of the LED

FlintScienceFair.org

- What is a potentiometer (pot)?
 - A pot is a type of variable resistor that has 3 terminals, two end terminals and a moveable wiper terminal.
 - Commonly used as position sensors.

- Where are pots used?
 - Pots are used in many devices, from volume knobs, industrial equipment, servos, home appliances, vehicles, and much, much more.
 - Activity: find a specific device that uses a pot.

Example Potentiometers

Voltage Divider Lesson 3: Pot

- What is a voltage divider?
 - Simple circuit which turns a large voltage into a smaller one.
 - Vout = Vin $*\frac{R2}{R1+R2}$
 - Vin = 5V, R1 = 50, R2 = 50 - Vout = 5V $*\frac{50}{50+50}$ = 2.5V
 - Vin = 5V, R1 = 20, R2 = 80 - Vout = 5V $*\frac{80}{20+80}$ = 4V
 - More Info:
 - <u>https://learn.sparkfun.com/tutorials/voltagedividers/all#:~:text=A%20voltage%20divider%20is%20a,most%20fundamental%20circui</u> ts%20in%20electronics

FlintScienceFair.org

Voltage Divider Lesson 3: Pot

- What is a voltage divider?
 - Simple circuit which turns a large voltage into a smaller one.

• Vout = Vin
$$*\frac{R2}{R1+R2}$$

- Vin = 5V, R1 = 10, R2 = 90
 Vout = ?
- Vin = 5V, R1 = 180, R2 = 20
 - Vout = ?
- More Info:
 - <u>https://learn.sparkfun.com/tutorials/voltagedividers/all#:~:text=A%20voltage%20divider%20is%20a,most%20fundamental%20circui</u> <u>ts%20in%20electronics</u>

• Potentiometers are commonly used as adjustable voltage dividers.

FlintScienceFair.org

- How do I use a potentiometer?
 - Follow the connection diagram to the right. Your
 Grove Beginner's Kit has already done this for you.
 - We then read the state of the input using the analogRead function.
- More Info:
 - https://en.wikipedia.org/wiki/Potentiometer
 - <u>https://www.allaboutcircuits.com/textbook/direct-</u> <u>current/chpt-6/voltage-divider-circuits/</u>

FlintScienceFair.org

- How do I use a potentiometer?
 - Follow the connection diagram to the right. Your
 Grove Beginner's Kit has already done this for you.
 - We then read the state of the input using the analogRead function.
- More Info:
 - <u>https://en.wikipedia.org/wiki/Potentiometer</u>
 - <u>https://www.allaboutcircuits.com/textbook/direct-</u> <u>current/chpt-6/voltage-divider-circuits/</u>

Combining Analog, PWM, and LEDs Lesson 3: Pot

- We can use the MCU on our Arduino to read the value of the pot and output a PWM signal to the LED to control the brightness.
 - Outputting a higher value is a larger duty cycle which means a brighter LED.
- What hardware will we need for this Lesson?
 - Grove LED Module on pin D4
 - Grove Rotary Potentiometer Module on pin A0
 - Seeeduino Lotus (Arduino Uno compatible board)

11/1/2021

Open and Upload Sketch Lesson 3: Pot

- 1. Open Pot Sketch
 - a. File \rightarrow Sketchbook \rightarrow CrashCourse_Jan \rightarrow L3_Pot
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Watch the LED as you rotate the potentiometer.

Code Analysis – delayMicroseconds Function Lesson 3: Pot

delayMicroseconds(potValue);

- Wait for the number of microseconds (μ s) stored in potValue.
- This function is similar to the delay function from Lesson 1, except it pauses by microseconds instead if milliseconds.
- There are 1000 μs in 1ms and 1,000,000 μs in 1s.
- Syntax:

delayMicroseconds(µs);

- $-\mu$ s: number of microseconds (μ s) to pause.
 - Data type is unsigned int with a range of 0 to 16,383µs (about 16 ms)
- More information:
 - <u>https://www.arduino.cc/reference/en/language/functions/time/delaymicrosesorials/</u>

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

- What is Pulse Width Modulation?
 - PWM is a type of digital signal that varies its value using the width of the pulse.
- It is easy to convert a PWM signal back to an analog signal with a low pass filter.
- We can use this to control the brightness of the LED.
- More Info:
 - https://en.wikipedia.org/wiki/Pulse-width_modulation
 - <u>https://www.allaboutcircuits.com/textbook/semiconductors/chpt-11/pulse-width-modulation/</u>
 - https://learn.sparkfun.com/tutorials/pulse-width-modulation/all

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

- Two parts to Pulse Width Modulation
 - Duty Cycle (D), can can be calculated as follows:

• D =
$$\frac{t_H}{t_H + t_L}$$

- Where t_H is the time the signal is high,
- And t_L is the time the signal is low.
- Is measured as %
- Frequency (Hz), how many times the cycle can occur in 1 second

• F =
$$\frac{1}{t_H + t_L}$$

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

• D =
$$\frac{t_H}{t_H + t_L}$$
, F = $\frac{1}{t_H + t_L}$

- $t_H = 50 \text{ms}, t_L = 50 \text{ms}$ - $D = \frac{50 \text{ms}}{50 \text{ms} + 50 \text{ms}} = 50\%$
 - $F = \frac{1}{0.050s + 0.050s} = 10Hz$
- $t_H = 25\text{ms}, t_L = 75\text{ms}$ - $D = \frac{25ms}{25ms + 75ms} = 25\%$

$$- F = \frac{1}{0.025s + 0.075s} = 10Hz$$

• $t_H = 150 \text{ms}, t_L = 50 \text{ms}$ - $D = \frac{ms}{ms + ms} = \%$

$$- F = \frac{1}{s+s} = Hz$$

35

Pot Activities Lesson 3: Pot

- Activity 1
 - Change the LED PWM to get brighter with a clockwise rotation of the potentiometer.
- Activity 2 (Bonus / Homework)
 - If the light sensor is on pin A6, modify the sketch to use the light sensor instead of the potentiometer.

Lesson 4: Light Sensor

See the output of the light sensor in the Serial Monitor

FlintScienceFair.org

Light Sensor Introduction

Lesson 4: Light Sensor

- What is a Light Sensor?
 - A light sensor is a type of device that changes a measurable electrical property based on the number (and type) of photons hitting it.
 - They come in many types but the main three for sensing applications are
 - Photoresistors: Resistance changes with light
 - Photodiodes: Photocurrent increases with light (this is also how a solar cell works)
 - Phototransistors: Amplified version of a photodiode.
- Where are light sensors used?
 - Occupancy sensors, daylight sensors, fiber optic communications, TVs (remote control receiver), cell phones, range finders, camera image sensors, etc.
 - Activity: Find a device not listed above that uses a light sensor.
- More information:
 - <u>https://en.wikipedia.org/wiki/Photodetector</u>
 - <u>https://en.wikipedia.org/wiki/Photodiode</u>
 - <u>https://en.wikipedia.org/wiki/Photoresistor</u>
 - <u>https://www.seeedstudio.com/blog/2020/01/08/what-is-a-light-sensor-types-uses-arduino-guide/</u>

Serial Introduction

Lesson 4: Light Sensor

- What is Serial Communication?
 - A digital signal where data is sent one bit at a time over a single channel.
 - Serial communications include RS232, RS485, UART, USART, USB, Ethernet, CAN, I²C, SPI, SATA, etc.
 - Serial (without descriptors) typically refers to RS-232 and related communication signaling standards (UART or USART for a microcontroller).
- Where are serial communications used?
 - Internet, computers, cell
- More information:
 - https://en.wikipedia.org/wiki/Serial_communication
 - https://www.codrey.com/embedded-systems/uart-serial-communication-rs232/

Serial Introduction

Lesson 4: Light Sensor

ENGINEERING

40

- More information:
 - http://elextutorial.com/learn-arduino/arduino-serial-communication-write-port-example-test-beging

Lesson 4 Hardware

Lesson 4: Light Sensor

- What hardware will we need for this Lesson?
 - Grove Light Sensor Module on pin A6
 - Seeeduino Lotus (Arduino Uno compatible board)
 - The Arduino has the serial port hardware built into the device

mage modified from https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pd

Open and Upload Sketch

Lesson 4: Light Sensor

- 1. Open Light_Serial Sketch
 - a. File \rightarrow Sketchbook \rightarrow CrashCourse_Jan \rightarrow L4_Light_Serial.ino
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Open the serial monitor.
 - a. Tools → Serial Monitor (Ctrl+Shift+M)
- 5. Observe the output in the Serial Monitor

Serial Monitor

Lesson 4: Light Sensor

• What is the Serial Monitor?

- The Serial Monitor is a feature of the Arduino IDE that gives you a serial terminal to see what is being sent to the COM port and allows you to send stuff out of the COM port.
- We use this for receiving data from the Arduino.
- We can also use this to help us debug our sketches.

💿 C(OM3						_		×
									Send
13	13	18							^
24	13	24							
54	13	54							
52	13	54							
39	13	54							
37	13	54							
69	13	69							
75	13	75							
121	13	121							
187	13	187							
249	13	249							
230	13	249							
235	13	249							
235	13	249							
133	13	249							
59	13	249							\checkmark
Aut	toscroll	Show timestamp	Seeler personal See	Newline	~	9600 baud	~	Clear	output

Code Analysis – Serial Functions

Lesson 4: Light Sensor

- Serial.begin(9600);
 - Start the Serial port at a 9600 baud
 - Put this function in the setup() function
 - Must call this function before using any other serial function
- Serial.print("string");
 - print a string or value to the serial port
- Serial.println("string");
 - same as print but add a new line character at the end of the string or value
- Special characters:
 - `\t' is a Tab character
 - \n' is a New Line (some operating systems [\square] use $\n' n''$)
- More Information:
 - https://www.arduino.cc/reference/en/language/functions/communication/serial/
 - https://en.wikipedia.org/wiki/Control_character

Code Analysis – min() and max() Functions

Lesson 4: Light Sensor

min(valueA, valueB);

- Returns whichever value is lower

max(valueA, valueB);

- Returns whichever value is higher

- More information:
 - https://www.arduino.cc/reference/en/language/functions/math/max/
 - https://www.arduino.cc/reference/en/language/functions/math/min/

Sensors & Applications

Sensors & Applications: Color Sensors

- Think of how Red, Green and Blue combine to make colors
 - Sensors have individual photodiodes that are sensitive to a frequency band of light (color) and measure the intensity of that frequency.
 - Filters are used to make the photodiodes sensitive to limited frequency bands
 - Data from the individual diodes is combined to create a color measurement.

Sensors & Applications: Color Sensors

Object Color Detection

- Typical Application: light that shines out, reflected wavelengths are measured
- Able to measure intensity of ambient light

• <u>https://wiki.seeedstudio.com/Grove-I2C_Color_Sensor/</u>

FlintScienceFair.org

Sensors & Applications – Line Following Sensors

- Typically utilize IR (InfraRed) sensors
 - IR sensor consists of an LED and phototransistor
 - LED emits an IR light (humans an unable to see this)
 - Phototransistor is measuring IR light that is reflected back
 - White surface: reflects light back to the phototransistor
 - Black surface: absorbs light

Sensors & Applications – Line Following Sensors

• In-Use

Wrap-Up

Next Week

- Debug Sketch W2_Debug
 - Figure out why the program is not compiling.
- Challenge Sketch W2_Chal
 - Start with the sketch outline and write a program that:
 - Turns on the LED only when the potentiometer input is above 2.5V and display the potentiometer ADC input on the serial monitor
 - Hint: What is the ADC input for 2.5V

- Office Hours @ 7:00 PM Monday
 - Same Zoom call information
 - Will go through Debug and Challenge sketches

Lesson 5: Microphone

See the output of the microphone in the Serial Plotter At-home activity

Microphone Introduction

Lesson 5: Microphone

- What is a microphone?
 - A microphone is a transducer that converts sound wave to an electrical signal.
 - Microphones are used to record music and voice, but also used for scientific analysis.
- Where are microphones used?
 - Audio recording, cell phones, walkie-talkie, computers, sonar, presence detection, knock detection, etc.
- How do we use the Microphone?
 - Microphones must be amplified or conditioned before we can use the signal. We can then read the analog signal with the ADC in the microcontroller.
- More Information:
 - https://en.wikipedia.org/wiki/Microphone

Microphone

Lesson 5 Hardware

- What hardware will we need for this Lesson?
 - Grove Sound Module on pin A2
 - Seeeduino Lotus (Arduino Uno compatible board)
 - The Arduino has the serial port hardware built into the device

Open and Upload Sketch

- 1. Open Microphone Sketch
 - a. File → Sketchbook → FRSEF_Crash_Course → Week_2 → W2L5_Microphone.ino
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Open the serial monitor.
 - a. Tools → Serial Plotter (Ctrl+Shift+L)
- 5. Observe the output in the Serial Plotter

Serial Plotter

- What is the Serial Plotter?
 - The Serial Plotter is a feature of the Arduino IDE that gives you a graphical representation of what is being sent to the COM port.
 - We use this for receiving data from the Arduino.
 - The serial plotter will display up to
 500 consecutive sample periods.
- More Information:

- COM3 Mic_Filtered Mic_Minimum Mic_Maximum 800 0 600.0 400.0 2000000 baud 🕔 Send No line ending
- https://arduinogetstarted.com/tutorials/arduino-serial-plotter

Serial Plotter

Lesson 5: Microphone

- How do we use the serial plotter?
 - Optionally we start off with a header using the syntax:

Serial.println("header_1 header_2");

- We can add more headers by separating them with a space
- To display the values, we use the Serial.print() and Serial.println() functions to send values to the Serial Plotter similar to how we sent values to the Serial Monitor.
- Each value in a sample period should be separated by tab `/t' character. Each new sample period should be separated by a newline character or using the Serial.println() function.

Example Serial Plotter Code

```
void setup()
  Serial.begin(9600);
  Serial.println("header1 header2");
void loop()
  // get values to display
  int val1 = analogRead(A0);
  int val2 = analogRead(A2);
  Serial.print(val1);
  Serial.print('/t');
  Serial.println(val2);
```


Code Analysis – C++ Bitshift Operators

Lesson 5: Microphone

for(unsigned int i = 0; i < 1<<filterConstant; i++)</pre>

- Shift binary 1 to the left by filterConstant bits
 - Equivalent to 2^{filterConstant}
- Sitshift Left 0b0001 << 2 = 0b0100</p>
 - Shift the binary value on the left by the number of bits on the right
- >> Bitshift Right 0b0101 >> 1 = 0b0010
 - Shift the binary value on the right by the number of bits on the left
- Leading or trailing digits get dropped, and new digits are 0
- Often used to efficiently multiply (<<) or divide (>>) by powers of 2
- More Information:
 - <u>https://beginnersbook.com/2017/08/cpp-operators/</u>
 <u>https://www.arduino.cc/reference/en/</u>

^ _
* 4
* 8
/ 2
/ 2 / 4

Code Analysis – C++ Comparison Operators

Lesson 5: Microphone

for(unsigned int i = 0; i < 1<<filterConstant; i++)</pre>

- Is i less than 2^{filterConstant}?
- == Equal To \rightarrow TRUE if the left side is <u>equal to</u> the right side
 - Not Equal To \rightarrow TRUE if the left side is <u>not equal to</u> the right side
 - Less Than \rightarrow TRUE if the left side is <u>less than</u> the right side
- <= Less Than or Equal To \rightarrow TRUE if the left side is <u>less than or equal to</u> the right side
- > Greater Than \rightarrow TRUE if the left side is greater than the right side
- >= Greater Than or Equal To \rightarrow TRUE if the left side is greater than or equal to the right side
- More Information:
 - https://beginnersbook.com/2017/08/cpp-operators/
 - https://www.arduino.cc/reference/en/

!=

<

Code Analysis – C++ Arithmetic Operators

- + Addition
- Subtraction
- Multiplication
- / Division
- % Modulo (remainder)

$$A = 1 + 2 \rightarrow A = 3$$

$$B = 3 - 1 \rightarrow B = 2$$

$$C = 2 * 4 \rightarrow C = 8$$

$$D = 6 / 3 \rightarrow D = 2$$

$$E = 7 \% 4 \rightarrow E = 3$$

- More Information:
 - https://beginnersbook.com/2017/08/cpp-operators/
 - https://www.arduino.cc/reference/en/

Code Analysis – C++ Auto-increment and Auto-decrement Operators

Lesson 5: Microphone

for(unsigned int i = 0; i < 1<<filterConstant; i++)</pre>

Increment i by 1 at the end of the for loop.

++ Auto-increment $i++ \rightarrow i = i + 1$

Increments the value of a variable by 1

-- Auto-decrement $j-- \rightarrow j = j - 1$

- Decrements the value of a variable by 1

- More Information:
 - https://beginnersbook.com/2017/08/cpp-operators/
 - https://www.arduino.cc/reference/en/

Code Analysis – for Loop

Lesson 5: Microphone

for (unsigned int i = 0; i < 1<<filterConstant; i++)
{/* Do Something */}</pre>

Repeat code inside the curly braces 2^{filterConstant} times

• for () Loops are used to repeat code that appears between its curly braces

- More Information:
 - https://www.arduino.cc/reference/en/language/structure/control-structure/for/
 - https://beginnersbook.com/2017/08/cpp-for-loop/

Code Analysis – C++ Assignment Operators

Lesson 5: Microphone

micValueLong += micValue;

- Add micValue and micValueLong then store the result in micValueLong
- Equals Assigns value of right side to the left side
- **Plus Equals** $A += 2 \rightarrow A = A + 2$ +=
- Minus Equals -=
- Multiplication *=
- /= Division
- 8=
- Modulo (remainder) $E \$ = 6 \rightarrow E = E \$ 6$
- More Information:
 - https://beginnersbook.com/2017/08/cpp-operators/
 - https://www.arduino.cc/reference/en/

 $B -= 3 \rightarrow B = B - 3$

 $C *= 4 \rightarrow C = C * 4$

 $D = 5 \rightarrow D = D = 5$

Code Analysis – Averaging Filter

Lesson 5: Microphone

- What is a filter?
 - A filter is used to remove an unwanted component of a signal.
 - For sensor measurements a low pass filter is often used to reduce noise or some high frequency component.
 - There are many different types of filters, and numerous ways to implement filters.
- What is averaging?
 - Averaging is taking the mean value of a signal over the sampling period.
- More Information:
 - <u>https://en.wikipedia.org/wiki/Filter_(signal_proce</u>
 <u>ssing)</u>
 - https://en.wikipedia.org/wiki/Average
 - https://www.mathsisfun.com/mean.html

// Average filter int average; int sumSamples = 0; for(int i = 0; I < numSamples; i++) { sumSamples += analogRead(A2); } average = sumSamples / numSamples;

