

Measurements, Sensors and Data Logging Course

Week 3

Upcoming Weeks

- Office Hours
 - Monday Nov 15 @ 7:00 PM
- Weekly Session
 - Thursday Nov 11 @ 7:00 PM
 - Thursday Nov 18 @ 7:00 PM

Lesson 3: Potentiometer

Use a potentiometer to change the brightness of the LED

Voltage Divider Lesson 3: Pot

- What is a voltage divider?
 - Simple circuit which turns a large voltage into a smaller one.
 - Vout = Vin $*\frac{R2}{R1+R2}$
 - Vin = 5V, R1 = 50, R2 = 50 - Vout = 5V $*\frac{50}{50+50}$ = 2.5V
 - Vin = 5V, R1 = 20, R2 = 80 - Vout = 5V $*\frac{80}{20+80}$ = 4V
 - More Info:
 - <u>https://learn.sparkfun.com/tutorials/voltagedividers/all#:~:text=A%20voltage%20divider%20is%20a,most%20fundamental%20circui</u> ts%20in%20electronics

Voltage Divider Lesson 3: Pot

- What is a voltage divider?
 - Simple circuit which turns a large voltage into a smaller one.

• Vout = Vin
$$*\frac{R2}{R1+R2}$$

- Vout = ?
- More Info:
 - <u>https://learn.sparkfun.com/tutorials/voltagedividers/all#:~:text=A%20voltage%20divider%20is%20a,most%20fundamental%20circui</u> <u>ts%20in%20electronics</u>

Potentiometer Introduction Lesson 3: Pot

• Potentiometers are commonly used as adjustable voltage dividers.

Potentiometer Introduction Lesson 3: Pot

- What is a potentiometer (pot)?
 - A pot is a type of variable resistor that has 3 terminals, two end terminals and a moveable wiper terminal.
 - Commonly used as position sensors.

Potentiometer Introduction

Lesson 3: Pot

- Where are pots used?
 - Pots are used in many devices, from volume knobs, industrial equipment, servos, home appliances, vehicles, and much, much more.
 - Activity: find a specific device that uses a pot.

Example Potentiometers

Potentiometer Introduction Lesson 3: Pot

- How do I use a potentiometer?
 - Follow the connection diagram to the right. Your
 Grove Beginner's Kit has already done this for you.
 - We then read the state of the input using the analogRead function.
- More Info:
 - https://en.wikipedia.org/wiki/Potentiometer
 - <u>https://www.allaboutcircuits.com/textbook/direct-</u> <u>current/chpt-6/voltage-divider-circuits/</u>

Potentiometer Introduction Lesson 3: Pot

- How do I use a potentiometer?
 - Follow the connection diagram to the right. Your
 Grove Beginner's Kit has already done this for you.
 - We then read the state of the input using the analogRead function.
- More Info:
 - <u>https://en.wikipedia.org/wiki/Potentiometer</u>
 - <u>https://www.allaboutcircuits.com/textbook/direct-</u> <u>current/chpt-6/voltage-divider-circuits/</u>

Combining Analog, PWM, and LEDs Lesson 3: Pot

- We can use the MCU on our Arduino to read the value of the pot and output a PWM signal to the LED to control the brightness.
 - Outputting a higher value is a larger duty cycle which means a brighter LED.
- What hardware will we need for this Lesson?
 - Grove LED Module on pin D4
 - Grove Rotary Potentiometer Module on pin A0
 - Seeeduino Lotus (Arduino Uno compatible board)

Open and Upload Sketch Lesson 3: Pot

- 1. Open Pot Sketch
 - a. File \rightarrow Sketchbook \rightarrow CrashCourse_Jan \rightarrow L3_Pot
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Watch the LED as you rotate the potentiometer.

Code Analysis – delayMicroseconds Function Lesson 3: Pot

delayMicroseconds(potValue);

- Wait for the number of microseconds (μ s) stored in potValue.
- This function is similar to the delay function from Lesson 1, except it pauses by microseconds instead if milliseconds.
- There are 1000 μs in 1ms and 1,000,000 μs in 1s.
- Syntax:

delayMicroseconds(µs);

- $-\mu$ s: number of microseconds (μ s) to pause.
 - Data type is unsigned int with a range of 0 to 16,383µs (about 16 ms)
- More information:
 - <u>https://www.arduino.cc/reference/en/language/functions/time/delaymicrosesorials/</u>

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

- What is Pulse Width Modulation?
 - PWM is a type of digital signal that varies its value using the width of the pulse.
- It is easy to convert a PWM signal back to an analog signal with a low pass filter.
- We can use this to control the brightness of the LED.
- More Info:
 - https://en.wikipedia.org/wiki/Pulse-width_modulation
 - <u>https://www.allaboutcircuits.com/textbook/semiconductors/chpt-11/pulse-width-modulation/</u>
 - https://learn.sparkfun.com/tutorials/pulse-width-modulation/all

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

- Two parts to Pulse Width Modulation
 - Duty Cycle (D), can can be calculated as follows:

• D =
$$\frac{t_H}{t_H + t_L}$$

- Where t_H is the time the signal is high,
- And t_L is the time the signal is low.
- Is measured as %
- Frequency (Hz), how many times the cycle can occur in 1 second

• F =
$$\frac{1}{t_H + t_L}$$

Pulse Width Modulation (PWM) Introduction Lesson 3: Pot

• D =
$$\frac{t_H}{t_H + t_L}$$
, F = $\frac{1}{t_H + t_L}$

- $t_H = 50 \text{ms}, t_L = 50 \text{ms}$ - $D = \frac{50 \text{ms}}{50 \text{ms} + 50 \text{ms}} = 50\%$
 - $F = \frac{1}{0.050s + 0.050s} = 10Hz$
- $t_H = 25\text{ms}, t_L = 75\text{ms}$ - $D = \frac{25ms}{25ms + 75ms} = 25\%$

$$- F = \frac{1}{0.025s + 0.075s} = 10Hz$$

• $t_H = 150 \text{ms}, t_L = 50 \text{ms}$ - $D = \frac{ms}{ms + ms} = \%$

$$- F = \frac{1}{s+s} = Hz$$

16

Pot Activities Lesson 3: Pot

- Activity 1
 - Change the LED PWM to get brighter with a clockwise rotation of the potentiometer.
- Activity 2 (Bonus / Homework)
 - If the light sensor is on pin A6, modify the sketch to use the light sensor instead of the potentiometer.

Lesson 4: Light Sensor

See the output of the light sensor in the Serial Monitor

Light Sensor Introduction

Lesson 4: Light Sensor

- What is a Light Sensor?
 - A light sensor is a type of device that changes a measurable electrical property based on the number (and type) of photons hitting it.
 - They come in many types but the main three for sensing applications are
 - Photoresistors: Resistance changes with light
 - Photodiodes: Photocurrent increases with light (this is also how a solar cell works)
 - Phototransistors: Amplified version of a photodiode.
- Where are light sensors used?
 - Occupancy sensors, daylight sensors, fiber optic communications, TVs (remote control receiver), cell phones, range finders, camera image sensors, etc.
 - Activity: Find a device not listed above that uses a light sensor.
- More information:
 - <u>https://en.wikipedia.org/wiki/Photodetector</u>
 - <u>https://en.wikipedia.org/wiki/Photodiode</u>
 - <u>https://en.wikipedia.org/wiki/Photoresistor</u>
 - <u>https://www.seeedstudio.com/blog/2020/01/08/what-is-a-light-sensor-types-uses-arduino-guide/</u>

Lesson 4 Hardware

Lesson 4: Light Sensor

- What hardware will we need for this Lesson?
 - Grove Light Sensor Module on pin A6
 - Seeeduino Lotus (Arduino Uno compatible board)
 - The Arduino has the serial port hardware built into the device

nage modified from https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pd

Serial Introduction

Lesson 4: Light Sensor

- What is Serial Communication?
 - A digital signal where data is sent one bit at a time over a single channel.
 - Serial communications include RS232, RS485, UART, USART, USB, Ethernet, CAN, I²C, SPI, SATA, etc.
 - Serial (without descriptors) typically refers to RS-232 and related communication signaling standards (UART or USART for a microcontroller).
- Where are serial communications used?
 - Internet, computers, cell
- More information:
 - https://en.wikipedia.org/wiki/Serial_communication
 - https://www.codrey.com/embedded-systems/uart-serial-communication-rs232/

Serial Introduction

Lesson 4: Light Sensor

- More information:
 - http://elextutorial.com/learn-arduino/arduino-serial-communication-write-port-example-test-beging

ENGINEERING

Open and Upload Sketch

Lesson 4: Light Sensor

- 1. Open Light_Serial Sketch
 - a. File \rightarrow Sketchbook \rightarrow CrashCourse_Jan \rightarrow L4_Light_Serial.ino
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Open the serial monitor.
 - a. Tools → Serial Monitor (Ctrl+Shift+M)
- 5. Observe the output in the Serial Monitor

Serial Monitor

Lesson 4: Light Sensor

• What is the Serial Monitor?

- The Serial Monitor is a feature of the Arduino IDE that gives you a serial terminal to see what is being sent to the COM port and allows you to send stuff out of the COM port.
- We use this for receiving data from the Arduino.
- We can also use this to help us debug our sketches.

💿 C(OM3						_		×
									Send
13	13	18							^
24	13	24							
54	13	54							
52	13	54							
39	13	54							
37	13	54							
69	13	69							
75	13	75							
121	13	121							
187	13	187							
249	13	249							
230	13	249							
235	13	249							
235	13	249							
133	13	249							
59	13	249							\checkmark
Aut	Autoscroll Show timestamp				~	9600 baud	~	Clear	output

Code Analysis – Serial Functions

Lesson 4: Light Sensor

- Serial.begin(9600);
 - Start the Serial port at a 9600 baud
 - Put this function in the setup() function
 - Must call this function before using any other serial function
- Serial.print("string");
 - print a string or value to the serial port
- Serial.println("string");
 - same as print but add a new line character at the end of the string or value
- Special characters:
 - `\t' is a Tab character
 - \n' is a New Line (some operating systems [\square] use $\n' n''$)
- More Information:

11/4/2021

- https://www.arduino.cc/reference/en/language/functions/communication/serial/
- https://en.wikipedia.org/wiki/Control_character

Code Analysis - min() and max() Functions

Lesson 4: Light Sensor

min(valueA, valueB);

- Returns whichever value is lower

max(valueA, valueB);

- Returns whichever value is higher

- More information:
 - https://www.arduino.cc/reference/en/language/functions/math/max/
 - https://www.arduino.cc/reference/en/language/functions/math/min/

