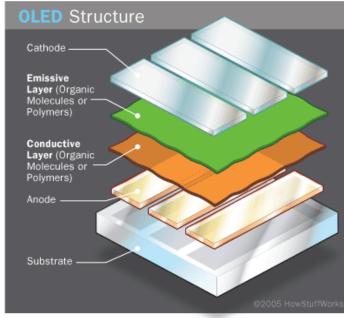


Measurements, Sensors and Data Logging Course

Week 6

Display

Use the OLED Display to provide information to the user.


FlintScienceFair.org

Organic Light Emitting Diodes

- Lesson 12: Display
- Organic Light Emitting Diodes (OLED)
 - Series of organic thin films between two conductors.
 - When electrical current is applied, light is emitted
 - Flexible and transparent options
- Relative to LCD
 - Lower power consumption.
 - Improved image quality better contrast, higher brightness, fuller viewing angle, a wider color range and much faster refresh rates.
 - Simpler design that enables ultra-thin, flexible, foldable and transparent displays
 - Better durability OLEDs are very durable and can operate in a broader temperature range

https://www.oled-info.com/oledintroduction#:~:text=OLED%20(Organic%20Light%20Emitting%20Diodes,a%20bright%20light%20is%20emitted https://electronics.howstuffworks.com/oled1.htm

FlintScienceFair.org

Hardware Lesson 12: Display

- What hardware will we need for this Lesson?
 - Grove Temperature and Humidity Module on pin D3
 - Grove Light Sensor on pin A6
 - Grove Temp & Humidity Sensor I2C
 - Seeeduino Lotus (Arduino Uno compatible board)

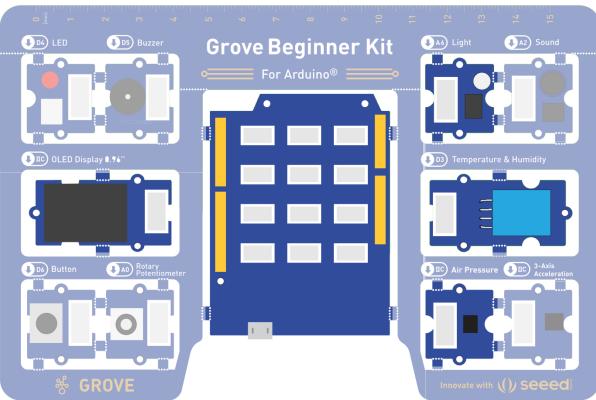


Image modified from https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdl

Library for Air Pressure Sensor Lesson 12: Display

- Library to use: Seeed BMP280
 - Search for **Seeed_BMP280** in the library manager and install it.
 - There are multiple variants available for the BMP280 air pressure sensor.
 #include <Seeed_BMP280.h>
 bmp280.init();

float temperatureBMP = bmp280.getTemperature(); //gets the temp
float pressure = bmp280.getPressure(); //gets the pressure

- More Information:
 - <u>https://github.com/Seeed-Studio/Grove_BMP280</u>

Library for Display Lesson 12: Display

- Library to use: U8x8lib
 - Search for U8g2 in the library manager and install it.

```
#include <U8x8lib.h>
U8X8_SSD1306_128X64_ALT0_HW_I2C_Display(U8X8_PIN_NONE);
Display.begin();
Display.setFlipMode(1);
Display.setFont(u8x8 font chroma48medium8 r);
```

```
Display.setCursor(0, 0);
Display.print("some text here");
```

- More Information:
 - https://github.com/olikraus/u8g2/wiki

Open and Upload Sketch

Lesson 12: Display

- 1. Open Simple Datalogger Sketch
 - File > Sketchbook > FRSEF_Crash_Course > Week_6 > L12_OLED.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino.
- 3. The OLED will display the time, temperature, humidity, pressure and light values from the sensors.

Sensor Calibration + Water Sensor

+5\

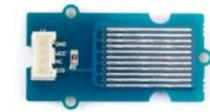
Signa

GND

Pull-Up Resistor 1 MO

Voltage divider with pullup resistor and water between the signal and ground lines.

FlintScienceFair.org

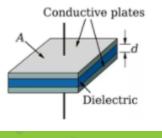

Moisture Sensors

Sensor Calibration + Moisture Sensor

- How it works: uses the conductivity of water to "short" between GND and the signal input
 - Digital Input: water is present or not
 - Analog Input: level of water present

12/17/2020

Soil Moisture Types


Sensor Calibration + Water Sensor

- Common Types
 - Resistive
 - Two probes
 - Current passes through the soil and the resistance value is calculated to measure soil moisture content.
 - Problems: sensor corrodes and resistance continually increases, fertilizer and nutrients can affect resistance
 - Quantitative measurement.
 - Capacitive
 - Single probe, soil contact with electrodes not required (less corrosion)
 - Soil + water form a dialectric, similar to a capacitor
 - Capacity of soil change with change of moisture content
 - Quantitative measurement

https://ucanr.edu/sites/CE_San_Joaquin/files/35895.pdf

Hardware

Sensor Calibration + Water Sensor

- What hardware will we need for this Lesson?
 - Grove LED, Buzzer and Display
 - Seeeduino Lotus (Arduino Uno compatible board)
 - Grove Water Sensor
 - Connect to D2 Header
 - Use the provided cable

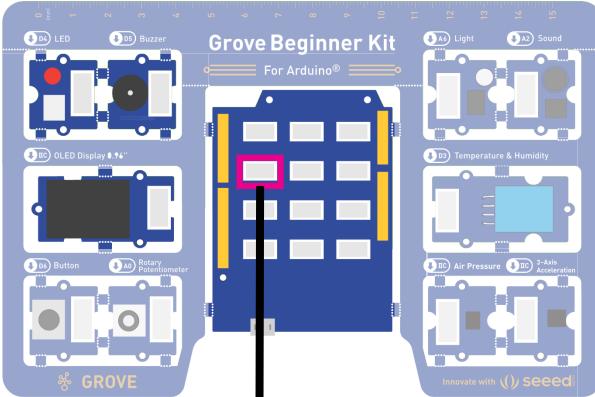


Image modified from https://files.seeedstudio.com/wiki/grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pd

Open and Upload Sketch

Sensor Calibration + Water Sensor

- 1. Open Simple Datalogger Sketch
 - File > Sketchbook > FRSEF_Crash_Course > Week_6 > L13_Water_Alert.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino, assuming you have the correct
- 3. Touch the water sensor, see what happens.
 - What happens if you place a drop of water on the sensor or dip the sensor into a cup of water?

Agriculture Applications

Sensor Calibration + Water Sensor

- What can we measure for agriculture applications?
 - Small scale individual plants, gardens
 - Large scale farms

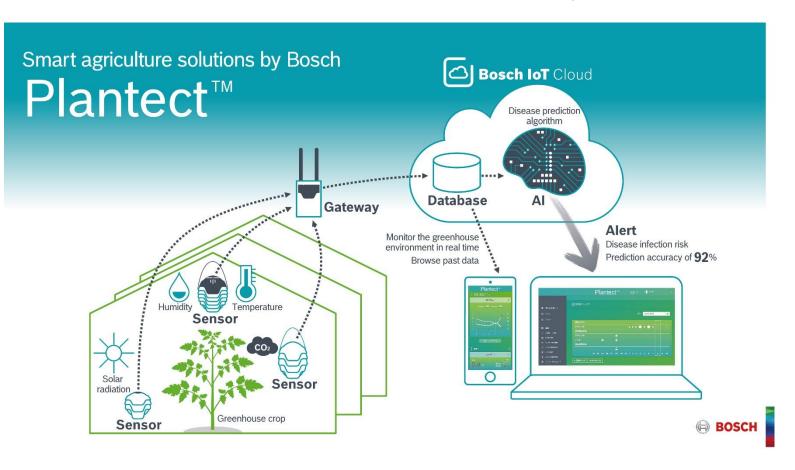
Agriculture Applications

Sensor Calibration + Water Sensor

- What can we measure for agriculture applications?
 - Individual plants
 - Environment
 - Temperature
 - Air Quality
 - Air Content: CO, CO2, Oxygen
 - Humidity
 - Soil: moisture, temperature
 - Fertilizer
 - Plant Height
 - Large Scale: entire fields
 - Optical (soil reflectance, color, height)
 - Cameras (identify weeds, where plants are growing)
 - https://cropwatch.unl.edu/ssm/sensing

https://www.mouser.com/applications/smart-agriculture-sensors/

https://www.wespeakiot.com/robust-sensors-and-the-power-of-the-cloud-the-perfect-recipe-for-smartfarming/



Agriculture Applications + Livestock

Sensor Calibration + Water Sensor

https://www.bosch-presse.de/pressportal/de/en/smart-agriculture-101824.html

Agriculture Applications + Livestock

Sensor Calibration + Water Sensor

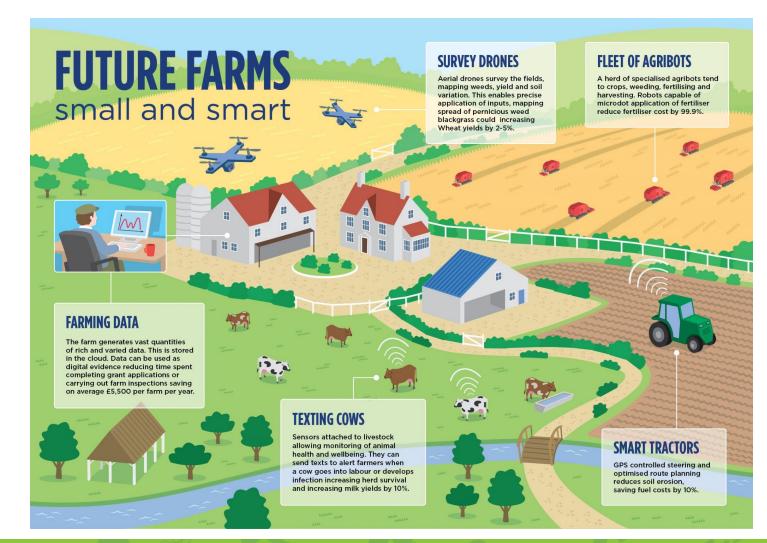
https://www.bosch-presse.de/pressportal/de/en/smart-agriculture-101824.html

Livestock Applications

Sensor Calibration + Water Sensor

- Livestock Applications
 - Location
 - GPS
 - Near-Field (near feed bunk, water)
 - -Health
 - Temp
 - Pulse-Ox
 - Accel
 - Calving (birth)
 - Weight

https://www.moovement.com.au/farm-management-platform/



Agriculture Applications

Sensor Calibration + Water Sensor

12/17/2020

FlintScienceFair.org

Two Point Calibration

Calibration

Sensor Calibration

- What is calibration?
 - Calibration establishes a known relationship between a measurement (ex. voltage) and a standard (ex. temperature, position).
- What types of calibration are there?
 - Offset (add or subtract out error)
 - Slope [Sensitivity] (multiply by a correction factor)
 - Slope and Offset (combination of prior two, think y = mx + b)
 - Two Point (linear interpolation between two known points)
 - Best Fit Equation [Characteristic Equation] (algebraic equation of line of best fit)
 - Look Up Table [LUT or Characteristic Curve] (linear interpolation between point on the table)
- More information:
 - https://learn.adafruit.com/calibrating-sensors?view=all
 - https://us.flukecal.com/literature/about-calibration

Open and Upload Sketch – At Home Sensor Calibration

- 1. Open Calibration Sketch
 - File > Sketchbook > FRSEF_Crash_Course > Week_6 > L14_Calibration.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino

Two Point Calibration of the Potentiometer Sensor Calibration

- Activity:
 - 1. Adjust the potentiometer such that the slot in the knob is vertical. Record at the raw value.
 - 2. Rotate the knob by 180° (half turn) and record the raw value.
 - 3. Update deg90Count and deg270Count values and re-upload.
 - 4. Note how the Degrees output is now much closer to the actual rotational value.
- When setting up logging record the new calibration value and the raw value off of the sensor.
- Calibration can also be done during data analysis.

Code Analysis: map() function

Sensor Calibration

- map(potValueRaw, deg90Count, deg270Count, 90, 270);
 - Linearly interpolate potValueRaw between points defined by deg90Count, deg270Count, 90, and 270.
- Re-maps a number from one range to another.
 - A value of **fromLow** would get mapped to **toLow**,
 - A value of **fromHigh** to **toHigh**,
 - Values in-between to values in-between, etc.
- Syntax:

map(value, fromLow, fromHigh, toLow, toHigh)

- value: number to map or interpolate
- fromLow: lower bound of input range (range of value)
- fromHigh: upper bound of input range (range of value)
- toLow: lower bound of the output range (range of calibrated value)
- toHigh: upper bound of the output range (range of calibrated value)
- More information:
 - <u>https://www.arduino.cc/reference/en/language/functions/math/map/</u>

Open and Upload Sketch – At Home

Sensor Calibration + Water Sensor

- 1. Connect to A2 header with the capacitive soil moisture sensor.
- 2. Break out the sound sensor.
- 3. Open Simple Datalogger Sketch
 - File > Sketchbook > FRSEF_Crash_Course > Week_6 > L14_SoilMoisture.ino
- 4. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino, assuming you have the correct
- 5. Place the probe in soil, add water to measure the difference How do we know what it actually relates to?
- 6. Update the calibration values!

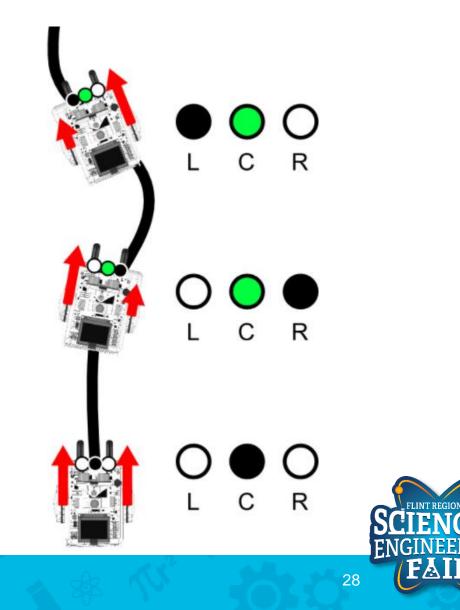
Sensors & Applications

Sensors & Applications - Airpods

- Airpods
 - Optical sensors
 - Installed in ear
 - Accelerometer
 - Gestures and control

FlintScienceFair.org

Sensors & Applications – Line Following Sensors


- Typically utilize IR (InfraRed) sensors
 - IR sensor consists of an LED and phototransistor
 - LED emits an IR light (humans an unable to see this)
 - Phototransistor is measuring IR light that is reflected back
 - White surface: reflects light back to the phototransistor
 - Black surface: absorbs light

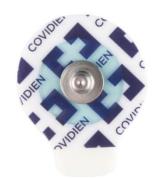
Sensors & Applications – Line Following Sensors

• In-Use

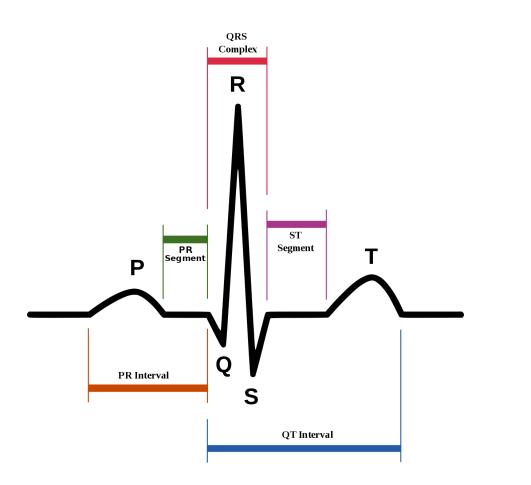
12/17/2020

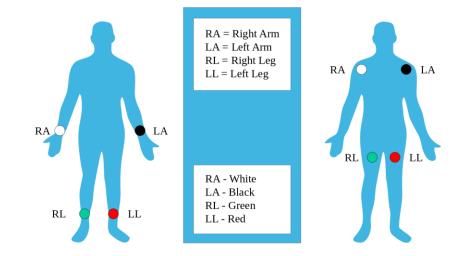
Sensors & Applications – EEG, ECG EMG

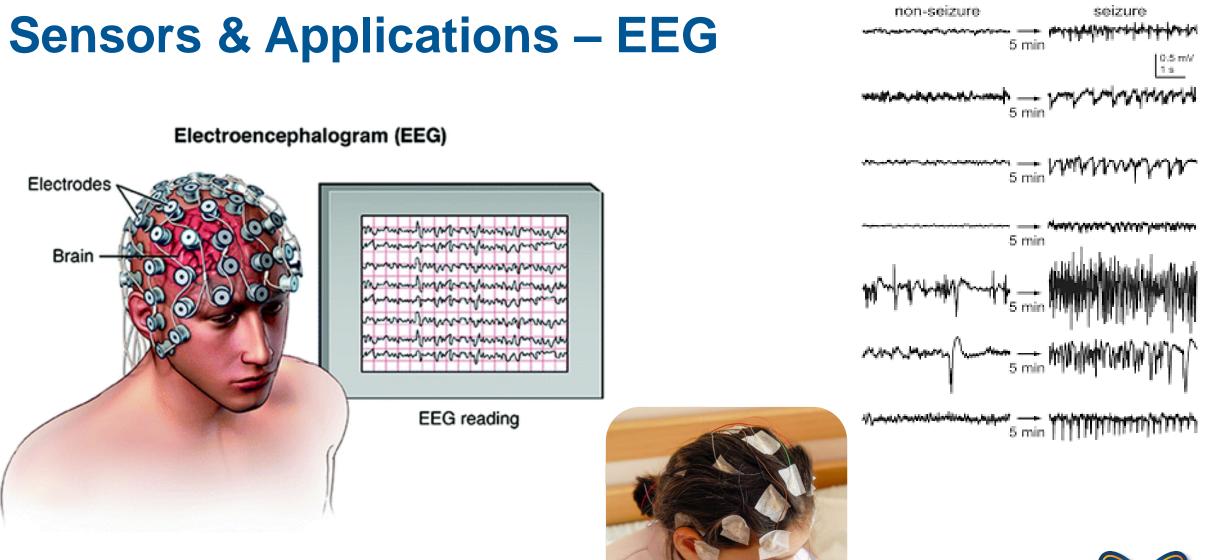
- Measures of biopotential, the electrical output of human activity
 - Electroencephalogram (EEG)
 - Monitors brain activity
 - · Measurements at forehead, top of head (potentially) and ears
 - Electrocardiogram (EKG)
 - Measures heart activity
 - Measurements at torso, arms and legs
 - Electromyography (EMG)
 - Electrical activity of muscles
 - Common test is to measure muscle response relative to stimulation of the muscle, measure a specific muscle

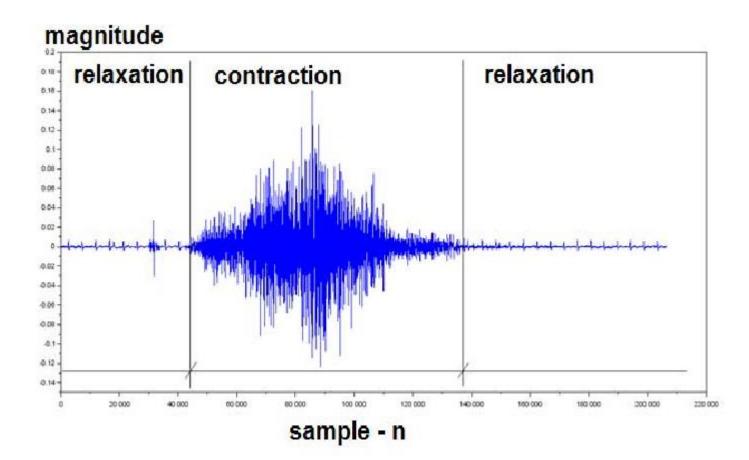

https://www.sensortips.com/featured/what-is-the-difference-between-an-ecg-eeg-emg-and-eog/ https://www.withings.com/de/en/health-insights/about-ecg-ekg-electrocardiogram

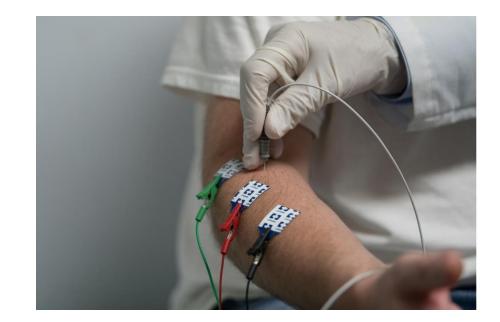
Sensors & Applications – EEG, ECG EMG


- Measuring
 - Amplifier is required (very lower voltages)
 - Electrodes used to "pick up" the voltages


Source	Amplitude (mV)	Bandwidth (Hz)
ECG	1-5	0.05-100
EEG	0.001-0.01	0.5-40
EMG	1-10	20-2000
EOG	0.01-0.1	dc-10

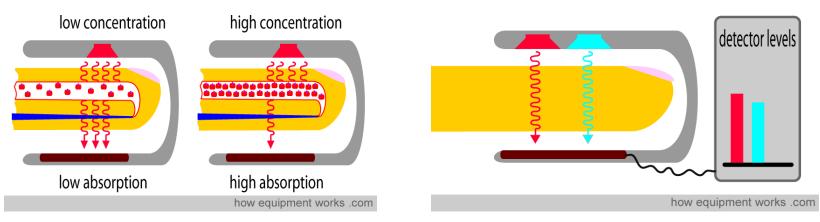

Sensors & Applications – EKG





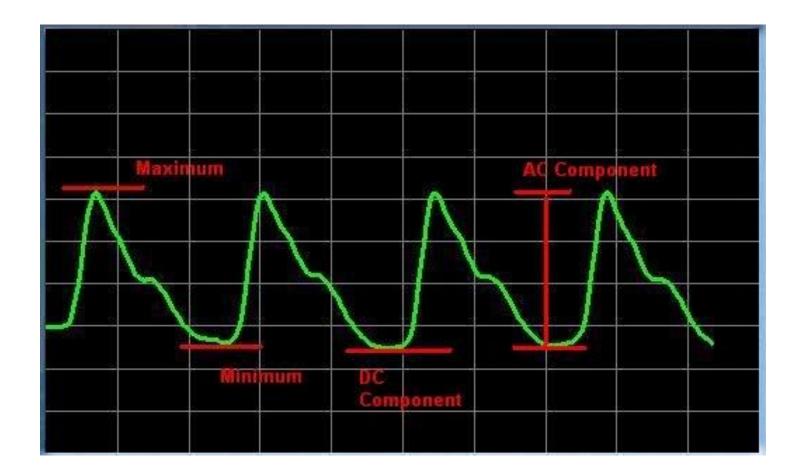
32

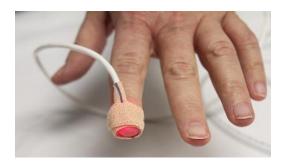
Sensors & Applications – EMG




Sensors & Applications – Pulse Ox

- Pulse-Oximetry
 - -Measure blood oxygen saturation (Sp02) and calculate heart rate
 - Oxygen molecules attach to hemoglobin
 - Types: Transmission and Reflectance
 - Hemoglobin with and without oxygen absorbs light differently (wavelength of light differs)
 - Oxy Hb absorbs more infrared light than red light
 - Deoxy Hb absorbs more red light than infrared light





Sensors & Applications – Pulse Ox

FRSEF

12/17/2020

FlintScienceFair.org

Putting It All Together FRSEF

- What are we trying to measuring? (our outcome)
 - Are there multiple ways we can measure it?
- What affects it? (our variables; independent, dependent and controlled)
 - Can we measure this?
- How fast will we measure and record it?
 - Are we limited by our equipment?
- How will we analyze it?
- How will we present our data?

Putting It All Together – Improved Helmet

- Engineering Goal: Design a Helmet to reduce concussions in football.
- What are we trying to measuring? Impact to brain.
 - G Force's via accelerometer
- What affects it? (our variables; independent, dependent and controlled)
 - Helmet Design (padding, shape, etc)
 - Drop Height
 - Environmental Factors? (temp, etc....)
 - Temp of padding, etc?
- How fast will we measure and record it?
- How will we analyze it?
- How will we present our data?

Putting It All Together – Best Fertilizer

- Hypothesis: Scott's Fertilizer will produce the highest yield of tomatoes.
- What are we trying to measuring? Yield of tomatoes quantity, mass
- What affects it? (our variables; independent, dependent and controlled)
 - Fertilizer brand
 - Amount of applied fertilizer
 - Environmental Factors (temp, sunlight, soil moisture, water quantity)
 - Soil pH
- How fast will we measure and record it?
- How will we analyze it?
- How will we present our data?

Upcoming Activities FRSEF

- Crash Course: Data Analysis
 - February
- 2021 Virtual Science Fair
 - Registering
 - www.flintsciencefair.org
 - Format, Resources and Templates
 - <u>https://www.flintsciencefair.org/important-stuff/virtual-fair-information/</u>
 - Senior Fair (9-12)
 - March 7: Registration Deadline + Upload of Project Materials
 - March 20: Judging Interviews (online via Zoom or similar)
 - Junior Fair (6-8) + Elementary Fair (4-5)
 - April 3: Registration Deadline + Upload of Project Materials
 - April 17: Judging Interviews (online via Zoom or similar)

Why Participate? FRSEF

- Open to science, engineering, math and computer science projects
- Great learning experience
- Interact and communicate with local professionals
- Prizes!
 - Over \$10,000 in cash prizes
 - Scholarships to Kettering and UM-Flint
 - 4 students advance to International Science and Engineering Fair (Senior category)
 - 15-20 students advance to Broadcom MASTERS (Junior category)

Resources FRSEF

- Interactive Project Guide
 - Part 1: Starting a Project
 - Part 2: Experimentation and Communicating Results
- Educator Grants
- Student Project Grants

Chris Tracy John Nick Ivan Clare MSU St. Andrews

Thank you!

12/17/2020