

Measurements, Sensors and Data Logging Course

Week 5

Upcoming Weeks

- Office Hours
 - Monday Dec. 14th @ 7:00 PM
- Weekly Sessions
 Thursday Dec. 17th @ 7:00 PM

1100 Started Cosine Tape (Sine check) 1525 Started Multy Adder Test. Relay #70 Panel F (moth) in relay. 1545 1755 actual case of bug being found. 1700 cloud dom.

Debugging!

12/10/2020

FlintScienceFair.org

- Steps
 - Attempt to Upload and view in serial monitor: DebugProgram_5
 - Desired Outcome: read temperature and humidity values

Debugging

- Solution
 - DebugProgram_5

incorrect pin for the temperature sensor in sketch
- D3 is the correct pin for the Temp & Humidity sensor
const byte dht11Pin = 6; (incorrect line)
const byte dht11Pin = 3;

Arduino Uno on COM4

- Steps
 - Attempt to Upload and view in serial monitor: DebugProgram_6
 - Desired Outcome: read temperature and humidity values

Debugging

- Solution
 - DebugProgram_6

Variable not declared in sketch - temp was meant to be tempC Serial.print(temp); (incorrect line) serial.print(tempC);

💿 DebugProgram_6 Arduino 1.8.13	_		\times
File Edit Sketch Tools Help			
			ø
DebugProgram_6			
Serial.println("Temperature_°C Tempe	ratur	e_°F	Hum: 🖊
<pre>dht11.begin(); // Start the DHT11 te</pre>	mpera	ture	and
}			
void loop()			
{			
static unsigned long nextTime = 0; /	/ at	what	time
unsigned long time = millis(); // ge	t the	curr	ent
if (time >= nextTime)			
{			- 1
<pre>float tempC = dht11.readTemperatur</pre>	:e();	// ge	t tł
<pre>float humd = dht11.readHumidity();</pre>	11	get t	he ł
Serial.print(temp); // send the t	emper	ature	in
<pre>Serial.print('\t'); // separate th</pre>	ie val	ues w	ith
<pre>Serial.print(CtoF(tempC)): // sen </pre>	d the	temp	erat`
temp' was not declared in this scope	Сору е	error mess	ages
exit status 1			
'temp' was not declared in this scope			
<			>
52	Arduing	Uno on (COM4

Sensors & Applications

Sensors & Applications: Microphone

- What is a microphone?
 - A microphone is a transducer that converts sound wave to an electrical signal.
 - Microphones are used to record music and voice, but also used for scientific analysis.
- Where are microphones used?
 - Audio recording, cell phones, walkie-talkie, computers, sonar, presence detection, knock detection, etc.
- How do we use the Microphone?
 - Microphones must be amplified or conditioned before we can use the signal. We can then read the analog signal with the ADC in the microcontroller.
- More Information:
 - https://en.wikipedia.org/wiki/Microphone

Microphone

s/CMA-6542PF/186998

Sensors & Applications: Microphone

There are multiple types of microphones, most common are dynamic and condenser

- More Information:
 - <u>https://taylor-sound.com/taylor-sound-blog/whats-the-difference-between-a-dynamic-and-condenser-microphone/</u>

Sensors & Applications: Ultrasonic Sensors

- Application using microphones: ultrasonic sensors
 - Ultrasonic Sensors
 - Simple range finders
 - Object position and tracking
 - Example: automotive active safety

<u>https://www.seeedstudio.com/blog/2020/01/03/what-is-a-sound-sensor-uses-arduino-guide-projects/#:~:text=A%20sound%20sensor%20is%20defined,converting%20it%20to%20electrica20signals</u>

Sensors & Applications: Ultrasonic Sensors

- Ultrasonic Sensors
 - Object position and tracking
 - Example: automotive active safety

FlintScienceFair.org

Sensors & Applications: Microphone At Home Activity

- 1. Open Microphone Sketch
 - a. File → Sketchbook → FRSEF_Crash_Course → Week_2 → W2L5_Microphone.ino
- 2. Verify the sketch by clicking the Verify Button.
 - a. The sketch should compile with no errors.
- 3. Upload the sketch to your Arduino by clicking the Upload Button.
 - a. The sketch should re-compile, and then upload to your Arduino.
- 4. Open the serial monitor.
 - a. Tools → Serial Plotter (Ctrl+Shift+L)
- 5. Observe the output in the Serial Plotter

Accelerometer

Lesson 10

12/10/2020

FlintScienceFair.org

12/10/2020

120

Motion Sensors

Accelerometer

- Accelerometers are used to measure acceleration, in linear directions
- Measurements in m/s^2
 - $-1g = 9.8 m/s^2$
 - -0g = object not moving or in free fall
- Types: analog, digital (IIC, SPI), PWM
- Uses
 - Position tracking
 - Force measurement
 - Vibration measurement
- <u>https://www.adafruit.com/category/521</u>
- https://learn.sparkfun.com/tutorials/accelerometer-basics/all
- https://www.sparkfun.com/pages/accel_gyro_guide?_ga=2.260802829.124947883.1606791953-761679650.1605223049
- <u>https://www.seeedstudio.com/blog/2019/12/24/what-is-accelerometer-gyroscope-and-how-to-pick-one/</u>

(TOP VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS

Motion Sensors

- Accelerometers are used to measure acceleration, in linear directions
- How they work
 - Capacitive: capacitive plates internally, some fixed and others on springs, motion between plates causes change in capacitance
 - Piezo Electric: Small mass on springs around piezo-electric materials.
 Electrical charges are created.

Motion Sensors

- How they work
 - -MEMS: microscopic, silicon based moving mass
 - Uses either piezo or capacitive changes
 - <u>Cool Graphic</u>

Motion Sensors

- Other commonly used motion sensors:
 - Gyroscope: measure rotational motion
 - Magnetometer: measure magnetic force, typically magnetic north
- IMU: Accelerometer + Gyroscope

Hardware Accelerometer

- What hardware will we need for this Lesson?
 - Grove 3-axis Accelerometer Module on IIC
 - Seeeduino Lotus (Arduino Uno compatible board)
 - SD Card Shield + SD Card
- Please assemble parts the same way we did last week

nage copied from <u>https://www.amazon.com/HiLetgo-Logging-</u> <u>Recorder-Logger-Arduino/dp/B00PI6TQWO/</u>

Image copied from ttps://www.microcenter.com/product/4 85234/micro-center-64gb-microsdxcclass-10--uhs-1-flash-memory-card

FlintScienceFair.org

Library Accelerometer

- Library to use: *sparkfun LIS3DH*
 - Search for Sparkfun LIS3DH in the library manager and install it.
 - There are multiple variants available for the LIS3DH sensor.
 - #include <SparkFunLIS3DH.h>
 - LIS3DH myIMU(I2C_MODE, 0x19);
- More Information:
 - <u>https://github.com/sparkfun/SparkFun_LIS3DH_Arduino_Library</u>

Open and Upload Sketch

Lesson 10: Accelerometer

- 1. Open Simple Datalogger Sketch
 - File → Sketchbook → FRSEF_Crash_Course → Week_5 → L10_Accelerometer.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino, assuming you have the correct
- 3. Move the board around so that different faces point down for a couple seconds then gently shake or drop your board (from a couple inches)
- 4. Unplug the USB connector
- 5. Remove SD card and plug into your computer
- 6. Look at the data in your spreadsheet program
 - note the name of the file is now a number repressing the day, hour, minutes and seconds that the log started at. This prevents us from overwriting or appending data to older files!

- With SD Card shield attached, start recording and conduct multiple drop tests.
 - Conduct test at different logging rates.
 - Be careful as the SD card may lose connection
- When complete, unplug the USB cable and remove the SD card
- Insert the SD card into your PC and plot the data

Example Datalog Lesson 10: Accelerometer

	А	В	С	D	Е		F	G	н	1	J		К		L	м	N	0		Ρ	Q	R	S	
1	Acceleron	ieter Log				_									~								~	
2	*****					Ĭ	,																- V .	+ .
3	Time (ms)	X (g)	Y (g)	Z (g)	Mag (g)									C	hart I	itle								-
4	144	-0.0625	-0.025	1.0375	1.039681		2																	014
5	184	-0.075	-0.0125	1.0375	1.040282																			
6	224	-0.0625	-0.0125	1.025	1.02698																		2	
7	264	-0.075	0	1.025	1.02774														1.1					
8	304	-0.075	0	1.0125	1.015274		1.5								-									
9	344	-0.075	-0.0125	1.0125	1.015351								1.1											
10	384	-0.075	0	1.0375	1.040207								.			Ш.								
11	424	-0.1	0	1.0375	1.042308			ma		4	man	m		Asu			hanne !	N 10		na. Mar	an Ameri			
12	464	-0.125	-0.05	1.05	1.058596		T		Mun	m		V		1 million							NºV .			
13	504	-0.125	-0.025	1.05	1.05771					1			М.,		VNI		'N	'' / /		I				
14	544	-0.125	-0.0125	1.025	1.032669				N				11.1					V						
15	584	-0.1	-0.0125	1.0125	1.017503		0.5		ľ						111									
16	624	-0.1	0	1.0125	1.017426				h	1				I M	N I /ľ									
17	664	-0.0625	-0.025	1.0125	1.014735				Λ					1/W '	MI	1111,/								
18	704	-0.075	-0.0375	1.025	1.028424)		1	1			Ι.	Normal		IIII	N 1.	n			1		0	
19	744	-0.075	-0.0125	1.0125	1.015351		0	m	hand	- mbal	Jan Con	www	-1	IVV T		IVV	many	1 Am		~~~~~	And in	<u> </u>	-	
20	784	-0.075	-0.0125	1.025	1.027816			0~~~ V	A to ME	000	No m	10000			1500	d '	1 www.	29000 🔨	๛ทฅ	4~~250	W	30	000	
21	824	-0.075	-0.0125	1.025	1.027816							٦.	JI			. 11	1 1	~						
22	864	-0.0875	0	1.025	1.028728				11			1			111	NIN -								
23	904	-0.075	0	1.0125	1.015274		-0.5		Y						-W	₩¥-	-							
24	944	-0.1	0	1.025	1.029866								11			N								
25	984	-0.1125	0	1.0375	1.043582					1			M			11								
26	1024	-0.075	-0.0125	1.05	1.052749		1			1		- 1	·V			l'								
27	1064	-0.0375	-0.0375	1.0375	1.038854		-1				www	s.												
28	1104	-0.0625	-0.025	1.025	1.027208																			
29	1144	-0.0625	0	1.025	1.026904																			
30	1184	-0.075	-0.0125	1.025	1.027816		-1.5																	
31	1224	-0.0875	0	1.025	1.028728					4 -			10/202	0 00.04 V	(_)			- 1 2 /0 / 202	0.00.04 V	(-)				
32	1264	-0.1	0	1.025	1.029866					Ac	celeromet	er Log 12	/9/202	u 23:34 X	(g) -	Acc	eierometer Lo	g 12/9/202	:0 23:34 Y	(g)				
33	1304	-0.075	-0.0125	1	1.002887					—— Ac	celeromet	er Log 12	2/9/202	0 23:34 Z	(g) _	Acc	elerometer Lo	g 12/9/202	0 23:34 N	/lag (g)				
34	1344	-0.0625	-0.0125	1	1.002029	C)								-0								0	
35	1384	-0.0875	-0.0375	1	1.004521																			
36	1424	-0.1125	-0.025	1.0375	1.043881																			
37	1464	-0.1	-0.025	1.025	1.03017																			
	$\leftarrow \rightarrow$	092334	37	+)																			4	_

12/10/2020

Software Settings

Accelerometer

myIMU.settings.adcEnabled = 0;

myIMU.settings.tempEnabled = 0; // set to 1 to enable temp sensor readings

- Turn the output of the accelerometer on or off (1 = on)

myIMU.settings.accelSampleRate = sampleRate; // Hz.Can be:0,1,10,25,50,100,200,400,1600, 5000 Hz

- Sensor sample rates: how fast will the sensor update its output (0,1,10,25,50,100,200,400,1600,5000 Hz)

myIMU.settings.accelRange = 16; // 16 to read the sudden stop at the end of a drop, max G readable.

- Range of the accelerometer (options: 2, 4, 8, 16)
 - 2: -2g to +2g (-19.6 *m/s*² to +19.6 *m/s*²)
 - 16: -16g to +16g (-156.8 *m/s*² to +156.8 *m/s*²)

myIMU.settings.xAccelEnabled = 1;

- myIMU.settings.yAccelEnabled = 1;
- myIMU.settings.zAccelEnabled = 1;
- Turn the output of the accelerometer on or off (1 = on)

https://github.com/sparkfun/SparkFun_LIS3DH_Arduino_Library

Reading the Accelerometer

myIMU.readFloatAccelX()

- returns a floating point number of the acceleration in g's for the X axis myIMU.readFloatAccelY()
 - returns a floating point number of the acceleration in g's for the Y axis

myIMU.readFloatAccelZ()

- returns a floating point number of the acceleration in g's for the Z axis
- More Information:
 - <u>https://github.com/sparkfun/SparkFun_LIS3DH_Arduino_Library</u>

Code Analysis: Dynamically creating a filename

- createFilename()
 - Function that uses the Time from the RTC to create a unique filename each time it is called
 - Stores the filename in a global String variable called filename
 - Filename is formatted as DDHHMMSS.csv using the time that the file was created.
 - You can change this behavior if you need a different format say YYYYMMDD if you are creating a file every few days or so.
 - Log the data several times to see this function in action! You should find several files on your SD card.

Analysis Tools + Logging Trigger

Options

Analysis Tools + Logging Trigger

- Endless number of tools, some of the most commonly used:
 - -Excel
 - Power BI
 - -Matlab
 - MathCAD
 - Google Data Studio
 - Python Scripts (write your own)
- Random Other Tools – WinDarab (by Bosch Motorsport)

Resources

Analysis Tools + Logging Trigger

- Other Tools
 - Imagej <u>https://imagej.net/Welcome</u>
 - Image processing tool

- Resources to Learn More
 - Google Analytics Academy
 - <u>https://analytics.google.com/analytics/academy/</u>

Triggers Analysis Tools + Logging Trigger

- What is a Trigger?
 - A trigger starts an action when it detects an event.
 - We can program a trigger to detect a specific event and "trigger" a function of our choosing
 - We will use a trigger to detect an event such as dropping our accelerometer, and begin data capture
 - Triggers form an important and powerful part of modern test equipment data collection strategy.

https://en.wikipedia.org/wiki/Event-driven_programming https://en.wikipedia.org/wiki/Triggering_device

https://www.electronics-notes.com/articles/test-methods/oscilloscope/oscilloscope-trigger.php

Hardware Accelerometer

- What hardware will we need for this Lesson?
 - Grove 3-axis Accelerometer Module on IIC
 - Seeeduino Lotus (Arduino Uno compatible board)

Open and Upload Sketch

Lesson 11: Logging Trigger Round 1

- 1. Open Simple Datalogger Sketch
 - File → Sketchbook → FRSEF_Crash_Course → Week_5 → L11_Trigger.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino, assuming you have the correct
- 3. Open the serial monitor
- 4. Gently drop your board (from a couple inches)
- 5. See the data stream to the serial monitor
- 6. Copy the data to your spreadsheet program
- 7. Look at the data in your spreadsheet program

Activity Analysis Tools + Logging Trigger

- Import and plot x,y,z on a graph (use a scatter plot or line graph)
 - What data is present?
 - Beginning should show values very close to 0 for all axis
 - Then a large spike when the grove board hits a surface,
 - Secondary smaller spikes or oscillation may be seen as the board comes to rest with the magnitude around 1g

Calculating the Magnitude of Acceleration

- What is the Magnitude?
 - Magnitude is the "length" or "size" of a vector.
 - For acceleration it is the amplitude of the accelerat
 - It has no direction
- How do we calculate the magnitude of our 3-
 - $-Magnitude = \sqrt{X^2 + Y^2 + Z^2}$
 - Note the similarity to the Pythagorean Theorem

Code Analysis: vectorMagnitude() function(s) Accelerometer

float aMag = vectorMagnitude(float aX, float aY, float aZ);

• Functions written for you and included in code to calculate the magnitude.

```
// Calculate the magnitude of a 3D vector
float vectorMagnitude(float x, float y, float z)
{
    return sqrt(x*x + y*y + z*z);
}
// Calculate the magnitude of a 2D vector
float vectorMagnitude(float x, float y)
{
    return sqrt(x*x + y*y);
}
```


Code Analysis: Drop detection

Analysis Tools + Logging Trigger

• Drop detection is done by looking for the magnitude of acceleration to be close to 0g.

```
const float fallTrigger = 0.2; // in g, less than
// Detect falling and set trigger flag
bool triggerFall(float mag)
{
    if(mag < fallTrigger)
    {
       return true; // fall or drop detected
    }
    return false; // fall or drop not detected</pre>
```


Code Analysis: Movement detection

Analysis Tools + Logging Trigger

• Movement detection is done by looking for the magnitude of acceleration to be significantly greater than 1g or significantly less than 1g.

```
const float moveTriggerHi = 1.2; // in g, greater than
const float moveTriggerLo = 0.8; // in g, less than
// Detect movement and set trigger flag
bool triggerMove(float mag)
{
    if((moveTriggerHi < mag) || (mag < moveTriggerLo))
    {
      return true; // movement detected
    }
    return false; // movement not detected
```


Code Analysis: Impact detection

Analysis Tools + Logging Trigger

• Impact detection is done by looking for the magnitude of acceleration to be much greater than 1g.

```
const float impactTrigger = 4.0; // in g, greater than
// Detect impact and set trigger flag
bool triggerImpact(float mag)
{
    if(mag > impactTrigger)
    {
        return true; // impact detected
    }
    return false; // impact not detected
```


Edit Sketch

Analysis Tools + Logging Trigger

Modify the sketch so we use the pushbutton as our logging trigger

Original

if(!triggered) // if not triggered, check for trigger event

if(triggerFall(aMag) == true)

```
//if(triggerMove(aMag) == true)
//if(triggerImpact(aMag) == true)
//if(triggerButton() == true)
```

- New

if(!triggered) // if not triggered, check for trigger event

```
//if(triggerFall(aMag) == true)
//if(triggerMove(aMag) == true)
//if(triggerImpact(aMag) == true)
if(triggerButton() == true)
```


Open and Upload Sketch

Lesson 11: Logging Trigger Round 2

- 1. Open Simple Datalogger Sketch
 - File → Sketchbook → FRSEF_Crash_Course → Week_5 → L11_Trigger.ino
- 2. Upload the sketch to your Arduino by clicking the Upload Button.
 - The sketch should compile, and then upload to your Arduino, assuming you have the correct
- 3. Push the button and then gently drop your board (from a couple inches)
- 4. See the data stream to the serial monitor
- 5. Copy the data to your spreadsheet program
- 6. Look at the data in your spreadsheet program

Activity Analysis Tools + Logging Trigger

- At Home Activity
 - Modify the sketch to start recording when the board is moved
 - Modify the accelerometer settings for logging rate and time logged

Sensors & Applications

- Autonomous Driving
 - IMU (accel, gyro)
 - Location
 - GNSS (Global Navigation Satellite System) or GPS
 - External Object Detection
 - Radar
 - Lidar
 - Ultrasonic
 - Cameras
 - Vehicle Sensors
 - Wheel speed, steering angle

FlintScienceFair.org

- GNSS (Global Navigation Satellite System)
 - Multiple systems in opreration
 - GPS (US), Galileo (EU), GLONASS (Russia), Beidou (China)
 - Time clock
 - Update rate limitations
 - Common: 10 20 Hz
 - Mobile Phone: 1 Hz
 - Use IMU data to calculate location between GPS updates (gps imu fusion)
 - Location Calculation: integrate acceleration to get location, small errors start to add up (drift)

- GNSS (Global Navigation Satellite System)
 - Correction services: clock drift, orbit errors, atmosphereic errors
 - PPP: Precise Point Positioning global correction
 - RTK: Real Time Kinematic local base station that offset data
 - DGPS: Differential GPS base station that provides offset data

https://www.e-education.psu.edu/geog862/node/1828

- Radar
 - Output radio waves and measure signals received back.
 - Short Range Radar: ~24 GHz
 - 1 to 30 m
 - Long Range Radar: ~77 GHz
 - 3 to 80 200m
 - Pros: Robust for weather, low cost
 - Cons: Lower resolution

Radar examples

FlintScienceFair.org

• Lidar

- Illuminates a target with a laser and measures the characteristics of the reflected return signal.
 - Also called laser scanner, laser radar
- Range: 0 200m
- Pros: High resolution 3-D mapping, identify and classify objects
- Cons: problems in rain, fog, snow; high cost
- Mechanical Lidar: rotating assembly, 360° view, cost, size, robustness
 - "Orb" of google cars
- Solid State Lidar: no spinning parts, multiple at front, rear and side combined together

https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf?ts=1607565385866&ref_url=https%253A%252F%252Fwww.google.com% 252F

- Lidar
 - Mechanical Lidar: rotating assembly, 360° view, cost, size, robustness
 - "Orb" of google cars
 - Solid State Lidar: no spinning parts, multiple at front, rear and side combined together
 - Hundreds to thousands of lasers on each module
 - iPhone 12 Pro => better photos, 3D scanning, augmented reality

FlintScienceFair.org

Camera

- Used to detect objects and classify objects
- Mono camera: single camera
 - Object detection and classification
- Stereo camera: two cameras at known offset
 - Spatial awareness: measure distance and improved size calculations
 - Pros: High resolution 3-D mapping, identify and classify objects
 - Cons: High cost, high computing and software requirements

