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The field of ?Volume Electron Microscopy? (VEM), a 
collective term for Electron Microscopy (EM) techniques 
aimed at analyzing ?large volumes?, is undergoing a new 
renaissance thanks to the prospect of applying the tools of 
Deep Learning to volume reconstructions of cellular and 
sub-cellular components. VEM can be performed using 
Transmission (TEM) or Scanning (SEM) electron 
microscopy. Traditionally, serial section TEM (ssTEM) has 
been the tool of choice for 3D ultra-structural 
investigation of biological material. Nowadays, serial 
section SEM (ssSEM) is increasingly used as an alternative 
to ssTEM. In its most popular implementation, ssSEM 
encompasses two complementary techniques: Serial 
Blockface SEM (sbfSEM) and Focused Ion Beam SEM 
(fibSEM). In these two methods sections are repeatedly 
removed and discarded from a block of specimen surface 
inside the electron microscope, either via a diamond knife 
(sbfSEM) or via a focused ion beam (fibSEM). For example, 
sbfSEM has been used for the 3D reconstruction of liver 
cell nuclei. fibSEM has been used in a number of studies, 
including the segmentation and reconstruction of cellular 
components within an entire yeast cell, and the modeling 
of liver cells mitochondria. 

Once serial images from a block of biological material 
are derived from sbfSEM or fibSEM, restoring continuity to 
the serial image stack is essential for fully understanding 
the specimen. Until recently, analysis of EM images was 
carried out by specialists with experience in the 
identification of biological features in the complex 
grayscale world of EM. For example the reconstruction of 
the 3D shape of nuclei from serial sections would require 
an experienced microscopist to manually generate a ?2D 
mask? of the nuclei in each imaged slice, followed by 
stacking all the 2D masks together. 

     
 

However, it  has been calculated that this operation 
would require over 2000 years for a single person to 
reconstruct the 3D structure of 1 cubic millimeter of 
mammalian tissue. This hypothetical example exemplifies 
the need for an automated identification of subcellular 
components within each imaged slice, a process called 
semantic segmentation. 

Stack of images showing one nucleus (left) and the 3D reconstruction of two nuclei (right).

The goal of this study is to develop an artificial neural 
network with Residual U-Net architecture using the 
Keras/Tensorflow platform, for the purpose of 
automating the identification of the nuclear envelope 
in mammalian cells.  

2.  Training

Augmented images (of dimensions 256 x 256) are then 
fed as inputs to a Res-U-net. The network designed in this 
study is comprised of three parts: encoding, bridge, and 
decoding. The first part encodes the input image into a 
compact representation. The last part recovers the 
representations to a pixel-wise categorization, i.e. a 
semantic segmentation. The middle part acts like a bridge 
connecting the encoding and decoding paths. All of the 
three parts are built with residual units. The encoding path 
has three residual units. In each unit, instead of using 
pooling operation to down-sample the feature map size, a 
stride of 2 is applied to the first convolution block to reduce 
the feature map by half. The decoding path consists also of 
three residual units. Before each unit, there is an 
up-sampling of feature maps from lower level and a 
concatenation with the feature maps from the 
corresponding encoding path. After the last level of 
decoding path, a 1x1 convolution and a sigmoid activation 
layer are used to project the feature maps into a semantic 
segmentation which is compared with the manually drawn 
mask of the image. During consecutive optimization cycles 
the Res-U-Net learns how to minimize the difference 
between the predicted segmentation mask and the 
hand-drawn segmentation mask. Training required the 
refinement of 75,528,113 parameters, and was carried out 
for 60 epochs, each epoch representing the optimization of 
network parameters using 30 minibatches of 5 images 
each. 

Manually drawn nuclear masks are show next to 6 different TEM images of rat liver cells.

Once the Res-U-Net training was completed, as attested 
by the lack of further reduction of the loss in additional 
refinement cycles, the network was tested by calculating 
the corresponding nuclear masks for the four TEM images 
included in the validation set. These mask are shown below 
in transparent cyan color superimposed on the four images 
in the validation set.

Initial testing shows that the same network architecture is 
also effective in identifying the envelope of mitochondria. 
However, due to the smaller dimensions of these 
organelles with respect to the nucleus, it is necessary to use 
larger images of dimensions 512 x 512, and comparatively 
longer training cycles. 

The results illustrated the range of capabilit ies of the 
network architecture as well as the efficiency and quickness 
with which the network was able to identify nuclei and 
mitochondria. The development of this tool can prove to be  
extremely valuable for the reconstruction of 3D models of 
cells. It is much more efficient than current methods of  
identification and reconstruction and just as accurate, 
giving pathologists and physiologists an asset that makes 
their work considerably easier. 

1. Im age pre-processing 

Nuclear masks in 21 TEM images of rat liver cells were 
drawn manually using Matlab Image Segmenter (below). 
Paired images and masks were then split into a training set 
of 15 pairs and a validation set of 4 pairs . 

As the loss function (the difference between the 
predicted and hand-drawn mask), a combination of the 
cross entropy loss and of the Dice coefficient was used. 
The dice coefficient has been shown to increase 
performance over just the cross entropy loss. The Dice 
coefficient can be generalized to binary masks by the 
summation of the probabilit ies in the denominator as 
shown on the side:

Dice coefficient. Y is the ground truth (hand drawn-mask) and  Y-hat 
is the predicted mask (network output) refined at each iteration. 

The goal of this study was to design and train an Artificial 
Neural Network capable of identifying the nuclear envelope 
in TEM/SEM images of mammalian cells, for the purpose of 
reconstructing the 3D structure of nuclei from serial 
sections. I have accomplished my goal by developing a 
Residual-U-Network that, upon training, identified correctly 
the nuclear envelope in TEM images that had not been 
previously exposed to the network.
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